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Abstract

We build an algorithm for stock selection based on indicators of time series of stocks

(return, volume, volatility, bid-ask spread) that should be associated with the dissemination

of private information in financial markets. We use a machine learning algorithm for the

identification of the most relevant indicators for the prediction of stock returns and to

define a trading strategy. The procedure combines a sequential inclusion of predictors

with a classification algorithm for the trading signal. We apply the methodology to two

sets of stocks belonging respectively to the EUROSTOXX50 and the DOW JONES index.

Performance is smoother than in the Buy&Hold strategy and yields a higher risk-adjusted

return, in particular in a turbulent period. However, outperformance vanishes when 5-10%

transaction costs are inserted.
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1 Introduction

In this paper we build a stock picking/trading algorithm based on indicators derived from

time series of stocks (price, volume, bid-ask spread, min-max price). The analysis of

time series is based on regularities that should be associated with the dissemination of

(private-asymmetric) information in financial markets. Financial markets theory provides

a large set of such indicators but the empirical evidence on their capability to reflect private

information and on their usefulness to trade successfully is lacking. In what follows, we

adopt an agnostic approach, we start from a wide set of indicators and we adopt a machine

learning technique (wrapping procedure and a classification algorithm) to select indicators

to build the stock picking/trading algorithm. The capability of an indicator to reflect

private information is evaluated through its capability to predict price movements in the

short run and to build a successful trading algorithm.

As inputs, the algorithm receives indicators of outliers of the financial time series that

are associated by the financial theory to the dissemination of private-asymmetric informa-

tion in financial markets. Such indicators are identified as outliers of the following variables:

return with respect to the ”market model”, trading volume growth, bid-ask spread and

volatility, serial correlation of returns and trading volume. The combination of a subset of

these indicators is used to identify a market signal for each security (BUY, NEUTRAL or

SELL) to be confronted to stock return through a classification algorithm. We have two

main goals: to test the capability of these market indicators to build a successful trading

algorithm and to shed some light on the relevance of each indicator in predicting price

movements. In this perspective, a machine learning algorithm provides a very useful tool

as it allows to consider a wide set of indicators.

The paper is related to several strands of literature. First of all, it contributes to

literature on asymmetric information in financial markets/insider trading, see [19, 21, 30,

44, 63] for theoretical analysis and [18, 49] for empirical analysis, see also [35, 59, 60] for

trading strategies based on insiders’ trades. As far as we know, this is the first paper that

exploits a full collection of indicators on the potential dissemination of private information

in financial markets to build a trading strategy. The peculiarity of our approach is that the

selection of the indicators is done through an iterative machine learning algorithm without

choosing a priori a time series anomaly to identify private information and a trading signal.

The paper is also related to the literature on stock picking exploiting time series regu-

larities, in particular to the papers exploiting short memory trends, i.e., momentum strate-

gies, e.g., see [34, 58, 62], and to papers that evaluate the performance of technical analysis

strategies, e.g., see [3, 9, 24, 31, 38, 46, 54, 61]. As far as the momentum strategy is con-

cerned, we provide a richer analysis extending the set of time series that are used to build
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the trading strategy and we fully endogenize the choice of the signals used to build the

trading strategy. As far as the technical analysis literature is concerned, we concentrate on

stock picking considering a large set of stocks, while the above papers mostly concentrate

on trading a stock index or a limited number of asset classes. Finally, our paper refers to

recent machine learning applications to forecasting financial markets and portfolio selec-

tion (classification algorithms, genetic algorithms, neural networks, deep learning, support

vector machines), see [2, 14, 16, 25, 26, 31, 32, 33, 37, 42, 52, 56].

The stock picking/trading algorithm works as follows. We start with a large set of pre-

dictors that are supposed to be useful for the definition of the trading signal. A predictor

is a market indicator computed on a specific moving window and for a specific confidence

level. We rank the predictors using the Information Gain criterium, see [1, 40] for details.

Then we build a hybrid approach (forward-backward) for the identification of most useful

predictors for the stock return one step ahead. The procedure uses the Naive-Bayes clas-

sification algorithm that learns to predict the decision strategy once observed the set of

market indicators. The trading model is selected evaluating the models on the validation

set according to accuracy indicators.

We apply the methodology to two set of stocks belonging to the EUROSTOXX50 and

the DOW JONES index. We evaluate the performance considering a period characterized

by a bull market and a period including the crisis associated with the COVID-19 pandemic.

We compare the performance of the trading strategy generated by the trading algorithm

to that of the Buy&Hold strategy considering the Sharpe ratio as performance metric.

Performance results are mixed. Assuming no transaction costs, the trading strategy

outperforms the Buy&Hold strategy in all the four out of sample subsets. Including trans-

action costs (5-10 basis points) outperformance disappears. This result is in line with the

recent literature, e.g., see [53, 61, 62], showing that profitability of technical trading rules is

weak in recent times because markets are becoming more efficient (traders are using them),

e.g., adaptive market hypothesis see [45]. However the results are more positive than re-

cent literature on the profitability of technical analysis, e.g., in [3] profitability of technical

analysis trading strategies is weak even with no transaction costs. This outcome is maybe

due to the fact that our trading signals have not been already considered extensively in

the literature and by practitioners. We observe that the trading algorithm performance is

smoother than the Buy&Hold strategy and is poor in a bull market while it is good in a

turbulent period. This result agrees with evidence provided in [37, 38, 62] showing that

technical trading rules are more resilient than the Buy&Hold strategy in turbulent periods.

Our analysis provides information about the capability of time series regularities to

predict future movements of the market. We do confirm that the actual weekly return is
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the most significant predictor as momentum strategies suggest. Contrary to large part of

the literature on private information suggesting that a large trading volume and a high bid-

ask spread provide evidence of private information, we find that they play a marginal role.

The second indicator that plays an important role to predict future returns and to build

a successful trading strategy is provided by the auto-correlation structure of the return-

volume time series. We can conclude that an extra return coupled with a structural break

in the volume/return correlation structure provide a signal that something is happening in

the market.

The paper is organized as follows. In Section 2 we provide theoretical insights of our

methodology. In Section 3 we describe the market indicators employed in our analysis.

In Section 4 we describe the trading algorithm. In Section 5 we provide an empirical

analysis applying the methodology to two portfolios built using stocks belonging to the

EUROSTOXX50 and the DOW JONES index.

2 Literature insights

The design of the algorithm comes from the private information/insider trading literature

which identifies a series of regularities of financial time series that are associated with

trading activity due to private/asymmetric information.

We refer to two strands of literature: models with homogeneous information, models

with heterogeneous-asymmetric information. We refer to [4] for a reference on these topics.

The literature on financial markets with homogeneous information has shown that under

the risk neutral probability measure (assuming no arbitrage opportunities in the market) or

under the historical probability measure with risk neutral agents, the discounted asset price

is a martingale and therefore the market is a fair game: the conditional expected excess

return (asset return minus the risk free return) is equal to zero and excess returns are se-

rially uncorrelated. This framework rationalizes the so called market efficiency hypothesis,

see [23]: according to the weak market efficient hypothesis, future excess returns cannot be

predicted on the basis of past returns, e.g., they follow a random walk. However, return

serial correlation cannot be interpreted univocally as a signal of insider trading/private

information. There is a large literature showing that asset returns with a holding period

smaller than one year are positively serially correlated and that returns with a holding

period greater than one year are negatively serially correlated, see [4, 10, 34]. The phe-

nomenon is also observed on equity indexes and therefore cannot be attributed entirely to

insider trading/market manipulation. As a matter of fact, the regularity may be due to

time varying risk premia or to behavioral biases.
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In the presence of insider trading and market abuse, return serial correlation is expected.

While the insider trader always trades a limited amount in the direction of his informa-

tion, the manipulator either releases information and trades in the opposite direction or

trades intertemporally in different directions to gain from sequential trades (e.g. pump and

dump strategies). Therefore, if insider trading occurs, then we expect positive (negative)

daily or weekly returns to follow positive (negative) returns because private information

is incorporated gradually in asset prices, in case of manipulation we expect a short term

price reversal (mean reversion) due to the release of false information or to large trades in

different directions. A model that rationalizes this type of behavior of insider traders is

provided by [41].

Insight 1. In the presence of private information dissemination, we observe positive

serial correlation in daily returns (trend).

The random walk hypothesis holds true in case agents are risk neutral. If agents are risk

averse then asset demand depends on its riskiness. Financial markets theory has proposed

a set of models that explain asset risk premia on the basis of no arbitrage/equilibrium

arguments. The benchmark is provided by the Capital Asset Pricing Model (CAPM):

if agents’ preferences are represented by a quadratic utility function or the two mutual

funds separation theorem holds true (e.g. asset returns are distributed as a normal random

variable) and markets are in equilibrium, then the asset risk premium is positively and

linearly related to its beta. According to the CAPM we can establish the equilibrium risk

premium of an asset and then we can detect anomalies with respect to it: we can take the

market model derived from the CAPM as a benchmark to evaluate abnormal co-movements

of the asset return with the market return.

Insight 2. In the absence of private information dissemination, daily returns should be

in line with the CAPM: excess returns (asset return minus the risk free return) should not

be different in a statistical sense from the value estimated by the market model.

Classical financial markets theory with homogeneous information is unable to provide

an explanation to several stylized facts. In particular, the literature is unable to explain

the large trading volume observed in the markets. Trading volume in financial markets

is due to two main motivations: risk sharing among agents and speculative trading. If

information is homogeneous then the second motivation is absent and agents only trade

to exploit Pareto improvements associated with differences in agents’ risk expositions. In

particular, if markets are complete, then trading is rather limited and occurs only in case

of a preference/technology shock.

The literature on markets with heterogeneous information is quite large. Under general

assumptions, it can be shown that in a perfectly competitive market with heterogeneous
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private information (all agents observe a private signal on the asset value) and no noise

(e.g. liquidity traders are absent) prices fully transmit private information, i.e., equilibrium

prices are fully revealing, they instantaneously reveal private information and coincide with

those of an economy where all private signals are public (they are observed by all agents),

see [29]. If noise is added, then prices are not fully revealing and the trade size is increasing

in the precision of information, on this point see for example [39]. Therefore, precise

private information (insider trading) is associated with large trades, for a discussion on the

relationship between trading size and information content see [12].

Insight 3. In the absence of private information dissemination, trading volume is limited

compared to the free float, private information is associated with large trades.

Speculative trading, and therefore large trading volume, can originate from public or

private information. In the first case we have a news for example on company profitability,

investment decision or mergers, agents trade because they revise company’s growth op-

portunities (time varying investment opportunities). If this is the case, then large trading

volume is mainly concentrated around the announcement date and does not last for a long

period. Instead, in case of private information we have that insiders trade until the asset

price incorporates the new information (leakage of information), i.e., there is a public an-

nouncement or other agents detect private information. Notice that a large trading volume

in a day with no serial correlation can also be observed in case of trades by funds for liq-

uidity reasons with no information content. As a consequence, serial correlation of trading

volume is an interesting way to discern between pure risk sharing/public information based

trading and private information trading. A model that disentangles the type of information

arriving in the market according to trading volume serial correlation is provided by [30].

Insight 4. When public information arrives on the market, daily trading volume is not

serially correlated. Trading volume serial correlation is associated with the dissemination

of private information.

The presence of heterogeneous information also affects the relation between trading

volume and asset returns. If large trading volume is due to uninformative motives (liquid-

ity/preference shocks), then market pressure lasts for a short period and it is likely that

we observe price reversal or mean reversion, i.e., negative return-volume correlation, see

[19, 21]; instead, if trading volume is due to private information then the relation can have

a different sign, i.e., positive return-volume correlation, see [6, 44, 48, 63].

Insight 5. In the presence of private information dissemination, large trading volume

is associated with a price trend (positive return-volume correlation) and high volatility, if

trades are due to liquidity motives then negative return correlation is more likely.

In a dealer market, dealers defend theirselves from trading with informed traders by
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setting a large bid-ask spread. As a matter of fact, there are two strands of literature for

the bid-ask spread: inventory and adverse selection models, see [55]. In adverse selection

models, see [22, 27], it turns out that the bid-ask spread is increasing in the degree of

asymmetric information in the market. Notice that bid-ask spread is positively associated

with volatility, see [28].

Insight 6. In the presence of private information dissemination, the bid-ask spread and

the volatility are high.

The above insights have been empirically tested through two different exercises: con-

sidering illegal insider transactions and transactions by directors of companies. There are

few papers on illegal insider trades. The literature provides little evidence in favor of the

above theoretical insights. [49] showed that days with trades by insiders are characterized

by large trading volume and high excess returns (in absolute value) with respect to the

market model (CAPM). Similar results have been obtained by [18]. Weak evidence on

price movements associated with insider trades has been detected in [13]. On trading by

directors and illiquidity the evidence is mixed: [5, 11, 15, 17] provide evidence that spread

widens and market depth falls on insider trading days as compared to non-insider trading

days; [18, 20] provide no evidence.

3 Market indicators

We consider the following time series for each stock on a weekly basis1:

• rt: weekly return which is defined as the total return of the security Pt+Dt
Pt−1

− 1,

where Dt is the dividend at time t (during the week) and Pt is the end of the week

closure price. In case the dividend is null at t, then rt is the standard weekly return

Pt−Pt−1

Pt−1
.

• vt: rate of growth of trading volume of the security at time t. Let Vt be the

adjusted turnover volume during week t, then vt = Vt
Vt−1

. The adjusted turnover

volume accounts for capital events that might affect the volume turnover.

• BAt: bid-ask spread of the security, the spread is computed as the difference be-

tween the average bid price and the average ask price observed the last day of week

t.

• PH
t

PL
t

: highest/lowest price observed during the last day of week t, where PHt and

PLt are the highest and the lowest price during the day.

1In what follows, writing ”at time t” we refer to the weekly observation according to the specification of
Thomson Reuters: as far as trading volume is concerned, we refer to the cumulative trading volume during the
week; price information (closure price, bid, ask, high a low) refers to the day of observation.
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We opt for weekly observations as a week allows to smooth the noise of daily obser-

vations. From the weekly time series we build four binary indicators idxi ∈ {0, 1}, i =

1, 2, 3, 5, that signal outliers in the time series with respect to regularities that are identi-

fied according to the literature on asymmetric/private information. The fourth indicator

renders three different values: idx4 ∈ {−1, 0, 1}. The indicators are as follows:

1. Excess trading volume

At time t, we reconstruct the historical distribution of the latest N−1 growth rates of

trading volume {vt−j}j=1,...,N and define v as the upper 1-c% quantile where c takes

values in the interval [0.025, 0.2] with equally spaced values of length 0.0252. Then,

idxc1 = 1 if and only if vt > v, that is if the observed growth rate of trading volume

at time t is higher than the 1-c% quantile of the historical distribution of the last N

observed values {vt−j}j=1,...,N , otherwise idxc1 = 0.

2. Excess bid-ask spread

At time t, we reconstruct the historical distribution of the security’s bid-ask spread

{BAt−j}j=1,...,N and define BA as the upper 1-c% quantile. Then, idxc2 = 1 if and only

if BAt > BA, that is, the observed bid-ask spread at time t is higher than the 1-c%

quantile of the historical distribution of the last N observed values {BAt−j}j=1,...,N ,

otherwise idxc2 = 0.

3. Excess volatility

At time t, we estimate a GARCH(1, 1) model for the volatility of the stock return

using data up to time t−1. We opt for this model for the volatility as there is evidence

showing that it provides a parsimonious representation of the volatility dynamics, e.g.,

see [7]. Therefore, for any j = 1, . . . , N , we consider the following model:

rt−j = σt−jzt−j

where

σ2
t−j = α0 + α1σ

2
t−j−1 + α2r

2
t−j−1, j = 1, . . . , N.

zt is a sequence of identically and independently distributed random variables with

zero mean and variance equal to 1. We use the estimated parameters at time t

(α̂0t, α̂1t, α̂2t) to obtain a forecast of the volatility at time t (σ̂2
t ). This value is com-

pared to the realized range volatility estimator, see [57]:

s2
t =

1

4 log(2)
[log

PHt
PLt

]2 (1)

2We use the same values of c for the other indicators presented in this section.
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Then, idxA3 = 1 if and only if Aσ̂2
t < s2

t , where A ∈ [0.4, 1.6] with equally spaced values

of length 0.1, otherwise idxA3 = 0. Notice that we vary significantly the benchmark

on the volatility allowing the algorithm to select the indicators from a large set of

variables.

4. Excess return

At time t we estimate the market model for the security: we regress the security

return {rt−j}j=1,...,N on the total return of the stock index to which the security

belongs {r∗t−j}j=1,...,N , computed as a weighted average of the total return of each

security belonging to the index:

rt−j = β0 + β1r
∗
t−j + zt−j , j = 1, . . . , N.

We use the parameters estimated at time t (β̂0t, β̂1t) and the realized stock index

return at t (r∗t ) to estimate the return of the security r̂t:

r̂t = β̂0 + β̂1r
∗
t ,

we compare it to the observed return rt. Then, we set idxc4 = 1 if rt is above the 1-c%

quantile, idx
(c)
4 = −1 if rt is below the c% quantile, and idxc4 = 0 otherwise.

5. Autoregressive structure

At time t, we estimate a vector autoregressive model of the form

Yt−j = A0 +A1Yt−j−1 + Et−j , j = 1, . . . , N,

where Yt−j = [rt−j , vt−j ]
>, Et−j is a sequence of independent and identically dis-

tributed vectors of zero mean random variables. We test the single element signifi-

cance of the autoregressive matrix by testing the null hypotheses: H i,j
0 : Aij1 = 0 for

i, j = 1, 2. We only consider the first three coefficients of A1 omitting the coefficient

on the serial correlation of the growth rate of trading volume because a preliminary

investigation of the data set showed that the hypothesis is violated too frequently.

We set idxc5 = 1 if at least two of the nulls H i,j
0 are rejected at significance level 1-c%,

otherwise idxc5 = 0.

These indicators can be associated to the literature discussion presented in Section 2:

the excess trading volume indicator builds on Insight 3 and 4; the excess bid-ask spread

and the excess volatility indicator are motivated by Insight 6; the excess return indicator

builds on Insight 1 and 2 (private information induces excess return in t and this is likely to

be observed in t+ 1); the indicator on the autoregressive structure is motivated by Insight
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1 and 5.

4 The trading algorithm

In this Section we present our selection/trading algorithm. We address this task through

two sections: in Section 4.1 we define our building blocks of the trading algorithm while in

Section 4.2 we provide a description of the engine of the algorithm and its implementation.

4.1 Building blocks

Our analysis is based on the following ingredients: predictor, response variable, trading

signal, model and trading model, sample.

1. Predictor

Predictors are indicators as defined in Section 3 computed for a time window N and a

confidence level 1 − c%. The universe of the indicators (idxc1, idx
c
2, idx

A
3 , idx

c
4, idx

c
5) is

built varying the size of the estimation window N which means that at time t only the

last N observations (weeks) are used for the computation of the indicator. N belongs to

the set W0 = {3, 4, 5, 6, 8, 10, 12, 26, 38, 52, 78, 104}. Varying the size of the window used to

estimate the indicator, we can group indicators tracking short, medium or long-term effects:

estimating the indicators over a short time window we have a reactive indicator, considering

a long window we have a much more stable/smoother indicator. Some indicators cannot be

computed for all N ∈W0 as we need a large sample to get convergence of the estimate. In

particular, the excess volatility indicator is computed only for N = 104 and the indicator

on the autoregressive structure for N ≥ 6.

2. Response variable

The response variable is a categorical variable reflecting the direction of the asset price

movement. As response variable associated to the predictors computed at time t, we con-

sider yt+1 which is based on market return rt+1. In particular, given a threshold parameter

θ and qf(θ) the associated quantile of the distribution of the asset return computed from

the observations in the training set, we set:

yt+1,θ =


1 if rt+1 > q0.5+θ

−1 if rt+1 < q0.5−θ

0 otherwise

(2)

Note that for θ = 0 we are back to a simple binary response variable. As θ increases, the

response variable, and therefore the trading algorithm, becomes more selective as there is
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an interval of returns centered on zero with a neutral signal.

The universe of the response variables is obtained varying the quantile threshold θ in

the interval [0, 0.05] with a step length of 0.01 yielding six specifications.

3. Trading signal

The procedure is based on a classification algorithm which receives the predictors computed

at time t as inputs and yields a trading signal: a positive signal (BUY) in case the classi-

fication algorithm yields +1, a negative signal (SELL) in case the classification algorithm

yields −1 and a neutral signal (NEUTRAL) in case the classification algorithm yields 0.

In the training/validation set the algorithm exploits the information contained in the

predictors to match the response variable. Then, out of sample the algorithm is used to

define a trading signal: a positive signal leads to buy one unit of the stock and to hold it for

the next week or to maintain the stock in the portfolio if it already belongs to the portfolio.

A negative signal leads to sell one unit of the stock if it is already in the portfolio and not

to buy it otherwise. A neutral signal yields no trading maintaining the actual position.

Notice that we do not allow for short sales. All the transactions are deployed borrowing or

lending the surplus at the risk free rate (set equal to zero).

At time 0 we suppose to have a capital equal to the sum required to buy one unit of

each stock in the set of eligible assets.

4. Model

A model is made up of the response variable yθ, for a specific θ, and the set of predictors

each one computed for a specific N ∈ W0 and confidence level c/parameter A. Therefore,

a model is identified by the parameters N, c,A, θ for each variable and is associated to the

corresponding data set obtained from the original observations. The data set provides the

input for the algorithm.

5. Trading model

The selection procedure described in the next Section renders the trading model at each t,

i.e., the best combination of response variable and subset of predictors for the generation

of the trading signal.

6. Sample

The sample of weekly observations of the primitive variables (return, trading volume, high-

est/lowest price, bid-ask price) allows us to identify the out of sample set as the set of

the most recent observations to be defined in Section 5. For each t in the out of sample

data set the trading algorithm is estimated in the set which contains all the observations

up to t. The observations are divided in two subsamples: the training set containing 80%

observations and the validation set containing the most recent 20% observations. As we

move to t + 1, the training set and the validation set include observations at time t and
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then again the sample is divided in two data sets according to the above fraction.

The procedure is represented in Figure 1.

Figure 1: Scheme of the trading algorithm workflow

4.2 Selection procedure

The selection procedure at the heart of the trading algorithm builds on several steps. The

trading signal is built through a classification algorithm where for each stock we need to

match the response variable in sample and to derive the trading signal out of sample. To

this end we employ the Naive-Bayes classification algorithm described in Appendix A, but

the procedure can be adapted to other classification methods.

At time t we have to address three different tasks:

1. for each θ (and response variable yt,θ) estimate the parameters of the Naive-Bayes

classifier for subsets of predictors varying N, c,A. This task is performed on the

training set;

2. for each θ, given the parameters of the classifier, the optimal subset of predictors is

chosen evaluating the performance of models in the validation set;

3. choose the trading model among the models (eleven models obtained for different θ)

calibrated through the first two steps.

Therefore, the Naive-Bayes algorithm is calibrated on the training set and the definition

of the subset of predictors and the (final) choice of the trading model at time t are performed

through the analysis of the performance of the models on the validation set. To this end

we have to define an accuracy measure to evaluate the performance of the models on the

validation set and the procedure adopted to select the predictors.
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1. Accuracy measures

There exist several accuracy measures based on the confusion matrix. We choose the

Mathew’s Correlation Coefficient (MCC) originally developed in [47] and recently proposed

as a performance metric in machine learning applications. The MCC is a method of cal-

culating the Pearson product moment correlation coefficient between actual and predicted

values, i.e., values predicted by the trading algorithm and those observed for the response

variable.

Referring to the confusion matrix that contains the following information based on

predicted values TN:=true negative, TP:=true positive, FP:=false positive and FN:=false

negative, MCC is defined as follows:

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
.

MCC ranges in the interval [−1,+1], −1 and +1 are obtained in case of perfect misclassifi-

cation and perfect classification, respectively. We choose the MCC ratio as it can be easily

extended to the case of multiclass response variable and it is well-suited for unbalanced

data sets (see [8, 36] for details).

The trading signal (BUY, NEUTRAL or SELL) is derived by the response variable

that takes values in the set {−1, 0, 1}. As we are interested in the accuracy of the classifi-

cation algorithm and also in avoiding huge losses and in exploiting potential future large

upward/downward movements, we introduce a metrics for model comparison defined as Re-

turn Weighted Accuracy (RWA). The indicator builds on the Accuracy measure which is

defined as the proportion of correct predictions among the total number of cases considered

in the binary classification problem:

Accuracy =
TN + TP

TN + FN + FP + TP
.

As we want to adopt a strategy that allows us to correctly identify potential large move-

ments of stock returns, we modify the Accuracy taking into account the absolute return

and define RWA as

RWA =

∑T
t=1 rt1{rt>0}1{yt=1} +

∑T
t=1 |rt|1{rt<0}1{yt=−1}∑T

t=1 |rt|1{yt=−1∨yt=+1}
.

The nice feature of the RWA is that it provides a high score to a model that is able to

correctly define the response variable in case of a large market movement.

Given a θ, the algorithm selects the predictors in a sequential way. A predictor is in-

cluded in the Naive-Bayes classifier estimated on the training set if it yields an improvement
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on the validation set considering MCC +RWA as performance indicator.

A crucial point is the order that is followed to consider and select the predictors.

2. Forward-Backward algorithm based on the Information Gain ranking of predictors

The searching algorithm is based on an iterative switch between sequential forward

selection for the inclusion of new variables (predictors) and backward selection for variable

elimination.

Given a set of n̄ variables, the procedure starts with 2n̄ possible models. As the dimen-

sion can be quite large, we perform a pre-selection of predictors. Considering the training

set, we compute the correlation matrix of predictors. For each couple of predictors showing

a correlation higher than 90% we eliminate one of them.

We follow an heuristic approach that allows us to select a limited number of variables

to be included in the trading algorithm. In the sequential forward search algorithm, that

is a wrapper method, we start with an empty set of variables (predictors in our setting) and

we sequentially test the inclusion of a new variable. The inclusion or not of a variable is

driven by an increase of MCC +RWA on the validation set for the Naive-Bayes classifier

calibrated on the training set.

We have to define a sequential order for the introduction of a predictor. To this end we

first rank the predictors using the Information Gain (IG) criterium which is widely used

for high dimensional data set to measure the effectiveness of variables in a classification

exercise, see [40].

IG is derived from the Shannon entropy. In information theory the entropy of a random

variable Y defined as

H(Y ) = −
∑
y∈Y

p(y)log(p(y))

where p(y) is the probability of observing a realization y of Y . It is possible to compute

the conditional entropy of Y given X as follows:

H(Y |X) = −
∑

x∈X, y∈Y
p(x, y)log(

p(x, y)

p(x)
).

where p(x, y) is the probability of observing a realization x of X and y of Y . This quantity

quantifies the amount of information needed to describe the outcome of Y given that the

value of X is known. Notice that H(Y |X) = H(Y ) if the two variables are independent,

instead H(Y |X) < H(Y ) in case there is a relationship between the two variables.

The IG measures the change in information entropy (Y ) from a prior state to a state

that takes some information as given (X):

IG = H(Y )−H(Y |X) = H(X)−H(X|Y ).
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The variables are ordered according to the IG from the most informative to the less infor-

mative.

In a forward search algorithm we can only add variables and never remove a variable

included in the set for the classification exercise. This feature increases computational

complexity as the size of the set of variables can only increase. Notice that following

this approach, one or more variables in the model may become redundant once we add

a new variable. To address this problem, we also include a backward selection step. In

practice, when we include a new variable we also check whether the objective function

(MCC +RWA) increases by excluding one of the variables already included in the set in

the previous step (we repeat this procedure for each variable). If we do not observe an

improvement in the objective function (MCC + RWA on the validation set), we proceed

with the forward step by testing the inclusion of the new variable. If the removal of at

least one of the variables provides an improvement in the objective function, we exclude

it and repeat the backward selection step by looking for a more parsimonious model. The

backward selection step stops when the inclusion of a variable does not provide anymore

an improvement in the objective function. Subsequently, we proceed with the inclusion of

a new variable in the forward step. The discarded variables in the backward step enter

in the set of variables that can be selected in the next forward step where the procedure

is still defined by the IG criterium. Indeed, a variable that is redundant in a given set

may become relevant in a new set (with a different variable mix). The procedure stops

when all the variables have been tested at least once in the forward selection step with no

improvement of MCC +RWA on the validation set.

We repeat the procedure described above for each response variable yt,θ identifying the

best model for each θ (eleven values). Then we choose (step 3) the trading model (θ̄,

the corresponding yt,θ̄ and the predictors selected as described above thanks to the MCC

and the RWA metrics). This choice is driven by the θ and model yielding the largest

MCC +RWA in the validation set.

5 Application to the EUROSTOXX50 and DOW

JONES index

Our application concerns weekly observations of 30 and 29 stocks belonging to the EU-

ROSTOXX50 and to the DOW JONES index, see Table 1 and 2 respectively. The market

capitalization of stocks included in both cases accounts for about 67% of the two indexes.

The data set covers the period 8/01/2004−14/05/2020, the window 8/01/2004−31/12/2018

is used for the training/validation set of the trading algorithm for the first observation out
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of sample (the data set is split according to the 80 − 20% fraction). The remaining part

of the data set is used to perform the out of sample analysis. As described in Section 4.1,

moving from the first week out of sample to the second one, the sample on which the al-

gorithm is calibrated is augmented by one observation and the sample is split according to

the above fraction. Few stocks of the two indexes are not included in the analysis because

they belonged to the Index for a smaller time window.

In order to test the performance of our trading algorithm under different market condi-

tions, we consider the full out of sample data set (1/1/2018− 19/5/2020) and a truncated

data set (1/1/2018 − 31/12/2019). The first data set includes a stable period and then a

bull market, the second data set also includes the period characterized by the COVID-19

pandemic with an abrupt crash and then recovery.

To save computational time, we select predictors monthly while the calibration of the

classifier is performed weekly. Our methodology works as follows. We first run the method

on the training/validation set (8/01/2004− 31/12/2018). For each week of the data set we

use the information provided by predictors to extract a trading signal which is matched

to a response variable. The models/sets of predictors are selected training the Naive-

Bayes classification algorithm on the training set and evaluating their performance on

the validation set leading to the definition of the trading model for the first week out of

sample. The parameters of the classifier are defined using all the information contained

in the training/validation set. Then the trading model is employed to define a trading

signal for the first week out of sample. As we move to the second week out of sample -

and then to further observations in the data set - the selection of the predictors and of

the trading model on the training set/validation set is performed every four weeks, but the

parameters of the trading model selected are calibrated using all the information contained

in training/validation set .

In Table 3 we present the main features of the trading algorithm for the stocks be-

longing to the two indexes. For the analysis performed on the stocks of the first index

(EUROSTOXX50) we have 373 possible predictors varying N, c, A as pointed out above:

N = 18 and c = 8 for idxi, i = 1, 2, 4, N = 9 and c = 8 for idx5 and N=1, A = 13 for

idx3. As we repeat the procedure of variable selection 31 times (every four weeks), the

total number of models is 930. On average, for each model, we select 12 predictors while

the average value for θ is 0.020. For the second set of stocks (DOW JONES) the average

number of selected predictors is lower while the average value for the selected θ does not

change.

In Table 4 and 5 we report the performance measures of the trading strategy provided

by the trading algorithm. The performance is computed on the full out of sample data
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Stock Weight Mean Std. dev Skewness Kurtosis

ANHEUSER-BUSCH INBEV 1.84% -0.0062 0.0541 -0.7349 7.5343

KONINKLIJKE AHOLD DELHAIZE 1.19% 0.0024 0.0329 -1.5634 9.3932

ADIDAS 1.93% 0.0018 0.0499 -1.3612 11.6333

AIR LIQUIDE 2.72% 0.0023 0.0312 -3.3902 21.2102

ASML HOLDING 5.01% 0.0062 0.0506 0.3614 4.4741

AXA 1.55% -0.0017 0.0542 0.2406 15.9672

BASF 2.05% -0.0051 0.0404 -0.9292 6.3422

BAYER 2.56% -0.0026 0.0509 -1.5217 5.1858

BMW 0.73% -0.0041 0.0505 0.2099 6.5277

BNP PARIBAS 1.73% -0.0056 0.0536 -0.9199 3.5837

CRH 0.82% 0.0009 0.0611 1.5034 18.5905

DAIMLER 1.04% -0.0054 0.0626 0.4486 8.0578

DANONE 2.08% 6.8191E-06 0.0305 -0.3224 11.9893

DEUTSCHE TELEKOM 2.15% 0.0011 0.0307 -3.2363 22.7216

ENEL 2.50% 0.0031 0.04574 -4.6189 37.3469

ENI 1.01% -0.0032 0.0551 -2.6117 29.1351

ESSILORLUXOTTICA 1.79% 0.0004 0.0385 -1.3366 6.7986

IBERDROLA 2.78% 0.0041 0.0367 -3.5055 26.3426

INTESA SANPAOLO 1.31% -0.0045 0.0487 -1.7956 10.4551

LVMH 4.55% 0.0022 0.0465 0.1683 7.7953

ORANGE 1.25% -0.0022 0.0340 -1.9399 17.9341

L’OREAL 3.01% 0.0025 0.0345 -0.9260 6.6713

BANCO SANTANDER 1.92% -0.0077 0.0524 -0.8165 7.3403

SAP 5.44% 0.0025 0.0428 0.5993 4.2418

SANOFI 4.59% 0.0045 0.0317 -1.7632 9.7246

SCHNEIDER ELECTRIC 2.10% 0.0022 0.0482 -0.9941 11.5907

TELEFONICA 1.12% -0.0044 0.0461 -0.7267 14.7854

VOLKSWAGEN 0.94% -0.0006 0.0506 -0.0638 3.7187

ALLIANZ 3.08% -0.0003 0.0476 0.1755 14.0075

SIEMENS 2.93% -0.0005 0.0448 -0.0902 9.0762

Table 1: Stocks included in the analysis of the EUROSTOXX50, main statistics are computed
using weekly returns.

17



Stock Weight Mean Std. dev Skewness Kurtosis

3M 1.84% -0.0020 0.0374 -0.6157 1.8742

AMERICAN EXPRESS 1.19% 0.0010 0.0328 -1.3955 5.7337

APPLE 1.93% 0.0064 0.0380 -0.1335 1.5649

BOEING 2.72% -0.0028 0.0627 -3.2376 23.3027

CATERPILLAR 5.01% -0.0010 0.0444 -0.1492 2.2808

CHEVRON 1.55% -0.0008 0.0369 -0.5581 3.8797

CISCO SYSTEMS 2.05% 0.0025 0.0340 -0.4608 1.0765

COCA COLA 2.56% 0.0013 0.0303 -1.6111 10.0665

EXXON MOBIL 1.73% -0.0027 0.0370 -0.9843 3.9654

GOLDMAN SACHS GP. 0.82% -0.0010 0.0370 -0.2659 1.8583

HOME DEPOT 1.04% 0.0029 0.0341 -2.3288 15.4366

INTEL 2.08% 0.0039 0.0411 -0.4232 1.0386

INTERNATIONAL BUS.MCHS. 2.15% 0.0000 0.0371 -0.7384 2.6631

JP MORGAN CHASE & CO. 2.50% 0.0003 0.0334 -0.6655 2.1219

JOHNSON & JOHNSON 1.01% 0.0013 0.0283 -1.0686 5.5331

MCDONALDS 1.79% 0.0018 0.0339 -3.5954 29.3686

MERCK & COMPANY 2.78% 0.0033 0.0295 0.0329 2.3172

MICROSOFT 1.31% 0.0070 0.0284 -0.4342 1.9535

NIKE ’B’ 4.55% 0.0039 0.0364 -1.4203 10.0375

PFIZER 1.25% 0.0012 0.0294 -0.2403 1.8999

PROCTER & GAMBLE 3.01% 0.0025 0.0256 -0.6316 5.7054

RAYTHEON TECHNOLOGIES 1.92% 0.0007 0.0398 -1.2525 8.2337

TRAVELERS COS. 5.44% -0.0012 0.0327 -1.5021 10.1541

UNITEDHEALTH GROUP 4.59% 0.0036 0.0395 -0.4904 2.3060

VERIZON COMMUNICATIONS 2.10% 0.0013 0.0252 -0.1837 1.0156

VISA ’A’ 1.12% 0.0050 0.0303 -1.3132 4.4255

WALGREENS BOOTS ALLIANCE 0.94% -0.0023 0.0390 -0.2318 1.0654

WALMART 3.08% 0.0023 0.0241 -0.0789 2.1764

WALT DISNEY 2.93% 0.0017 0.0334 -0.6310 4.9514

Table 2: Stocks included in the analysis of the DOW JONES, main statistics are computed using
weekly returns.

Description of the Database EUROSTOXX50 DOW JONES
# Predictors 373 373
# Stocks 30 29
# Periods of selection 31 31
# Number of Models 930 899
# Average number of variables for each model 12.15 10.29

Average θ 0.020 0.021

Table 3: Database description
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set and on the subset terminating by the end of 2019. We consider the trading strategy

defined by the trading model selected as above and we compare it to the performance of

the Buy&Hold strategy, where we assume to buy at time t = 0 one unit of each of the

30 stocks of the EUROSTOXX50 (29 for the DOW JONES index). As recent literature

has shown that the performance of technical rules are likely to vanish if transaction costs

are considered, we evaluate the performance including 0, 5, 10, 15, 20 basis points as

transaction costs. In the last column we also report the level of transaction costs that

renders the performance of the trading strategy (evaluated according to the Sharpe ratio)

equivalent to the performance of the Buy&Hold strategy. In Figure 2 and 3 we report the

performance of the trading strategy for the two applications.

Notice that the trading strategy renders a Sharpe ratio higher than the Buy&Hold

strategy in all the four datasets. In three out of four cases, the historical return is lower

than the Buy&Hold strategy but also the standard deviation is smaller. The trading

strategy is less volatile and less risky. Considering the shortest data set (the one with a

bull market that excludes the COVID crisis) the performance is slightly better and vanishes

when transaction costs accounting for five/ten basis points are included. Instead, when also

the COVID crisis is included in the data set, the performance is significantly better than

that of the Buy&Hold trading strategy and transaction costs accounting for ten/fifteen

basis points should be inserted to allow for the Buy&Hold strategy to outperform the

trading strategy. This result shows that the trading strategy performs well in crisis periods

as suggested in [37, 38, 62]. Notice that our strategy does not allow for short sales. We have

developed the trading strategy allowing for short sales. We omit to present the results for

the sake of brevity. We notice that allowing for short sales, the trading strategy becomes

smoother, the risk-adjusted performance compared to the Buy&Hold gets worse on the

shorter subsample and improves over the longer sample.

Our machine learning methodology allows us to assess the informative content of the

indicators. In Table 6 and 7 we provide statistics on the selection of predictors. The two

applications provide similar results. Confirming the literature on momentum strategies

that are built on a continuation of returns in the short run, the most relevant indicator

turns out to be the anomaly of stock return, then the one on the autoregressive structure

of return-volume turns out to provide significant information. Instead, excessive trading

volume and large bid-ask spread are not informative as the theoretical literature would

suggest. About the selectivity of the predictors we observe that a high confidence level

(high c) is chosen most of the times and that a long enough window (at least four months)

is employed most of the times.
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Figure 2: Cumulative return of the trading strategy and of the Buy&Hold strategy where the
set of stocks is provided by the EUROSTOXX50 Index.

Figure 3: Cumulative return of the trading strategy and of the Buy&Hold strategy where the
set of stocks is provided by the DOW JONES Index.
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Period Buy&Hold Trading Strategy Break even

From 01/01/2018
Transaction costs (bps) - 0 5 10 15 20 11.07

to 19/05/2020
Final perf. -3.90% 2.74% 0.53% -1.68% -3.88% -6.09% -2.15%
Mean exc.ret -1.65% 1.16% 0.22% -0.71% -1.64% -2.57% -0.91%
Std. dev 22.49% 12.38% 12.39% 12.38% 12.19% 12.40% 12.39%
Sharpe Ratio -7.30% 9.31% 1.80% -5.70% -13.19% -20.68% -7.30%

From 01/01/2018
Transaction costs (bps) - 0 5 10 15 20 5.94

to 31/12/2019
Final perf. 18.81% 13.07% 11.27% 9.47% 7.66% 5.86% 10.93%
Mean exc.ret 9.49% 6.60% 5.69% 4.78% 3.87% 2.96% 5.52%
Std. dev 10.25% 5.95% 5.96% 5.96% 5.97% 5.97% 5.96%
Sharpe Ratio 92.64% 102.92% 95.55% 80.19% 64.86% 49.55% 92.64%

Table 4: Statistics and performance measures of the trading strategy for the EUROSTOXX50
set of stocks computed using returns on an annual basis. The risk-free rate is rf = 0 while the
last column (break even) refers to the transaction cost that implies the same Sharpe ratio for
the trading strategy and the Buy&Hold strategy.

Period Buy&Hold Trading Strategy Break even

From 01/01/2018
Transaction costs (bps) - 0 5 10 15 20 12.48

to 19/05/2020
Final perf. 13.46% 12.66% 10.42% 8.17% 5.92% 3.67% 7.05%
Mean exc.ret 5.69% 5.35% 4.40% 3.45% 2.50% 1.55% 2.98%
Std. dev 16.46% 8.63% 8.63% 8.63% 8.63% 8.63% 8.63%
Sharpe Ratio 34.43% 61.78% 50.82% 39.86% 28.89% 17.92% 34.43%

From 01/01/2018
Transaction costs (bps) - 0 5 10 15 20 4.97

to 31/12/2019
Final perf. 26.60% 17.31% 15.44% 13.56% 11.69% 9.81% 15.44%
Mean exc.ret 13.43% 8.74% 7.79% 6.85% 5.90% 4.95% 7.80%
Std. dev 11.27% 6.55% 6.54% 6.54% 6.53% 6.53% 6.54%
Sharpe Ratio 119.17% 133.46% 119.10% 104.71% 90.29% 75.86% 119.17%

Table 5: Statistics and performance measures of the trading strategies for the DOW JONES set
of stocks computed using returns on an annual basis. The risk-free rate is rf = 0 while the last
column (break even) refers to the transaction cost that implies the same Sharpe ratio for the
trading strategy and the Buy&Hold strategy.

1-c% Ex.BA Ex.Ret Ex.TrVo Autoreg.Str Ex.Vola Overall

N.3 4 5 2.00% 15.06% 1.07% - - 18.13%
<90% 1.15% 3.81% 0.97% - - 5.93%
>=90% 0.86% 11.25% 0.09% - - 12.20%

N.6 8 10 1.54% 11.56% 2.15% 10.31% - 25.57%
<90% 0.84% 3.17% 1.37% 2.61% - 7.99%
>=90% 0.70% 8.40% 0.78% 7.70% - 17.58%

N. 12 26 38 4.23% 9.69% 4.58% 11.65% - 30.14%
<90% 1.08% 3.27% 0.79% 6.34% - 11.48%
>=90% 3.15% 6.42% 3.78% 5.31% - 18.66%

N.52 78 104 4.37% 8.08% 3.55% 8.14% - 24.14%
<90% 1.15% 2.76% 0.66% 4.53% - 9.10%
>=90% 3.22% 5.32% 2.89% 3.61% - 15.04%
A in [0.4;1[ - - - - 2.97% 2.97%
A in [1; 1.6[ - - - - 1.07% 1.07%

Overall 12.15% 44.39% 11.34% 30.10% 4.04% 100.00%

Table 6: Percentage of selected predictors for stocks belonging to the EUROSTOXX50 index.
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1-c% Ex.BA Ex.Ret Ex.TrVo Autoreg.Str Ex.Vola Overall

N.3 4 5 1.51% 17.25% 1.56% - - 20.32%
<90% 0.76% 5.19% 1.38% - - 7.33%
>=90% 0.76% 12.06% 0.17% - - 12.99%

N.6 8 10 2.13% 10.13% 1.91% 9.84% - 24.01%
<90% 1.06% 3.72% 1.47% 3.30% - 9.54%
>=90% 1.07% 6.41% 0.44% 6.54% - 14.46%

N.12 26 38 3.80% 8.98% 4.70% 11.43% - 28.92%
<90% 0.94% 3.29% 1.30% 5.23% - 10.76%
>=90% 2.86% 5.70% 3.41% 6.19% - 18.16%

N.52 78 104 4.19% 6.77% 2.93% 7.82% 5.05% 26.75%
<90% 1.24% 2.32% 0.49% 5.42% - 9.47%
>=90% 2.95% 4.44% 2.44% 2.40% - 12.24%
A in [0.4;1[ - - - - 3.19% 3.19%
A in [1; 1.6[ - - - - 1.86% 1.86%

Overall 11.64% 43.13% 11.10% 29.08% 5.05% 100.00%

Table 7: Percentage of selected predictors for stocks belonging to the DOW JONES index.
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6 Conclusions

Exploiting machine learning tools, in this paper we have tried to answer a long standing

question: Do financial time series reflect the dissemination of private information? We an-

swer this question using a methodology that in a very agnostic way starts from a large set

of indicators and aims to build a profitable trading strategy based on outliers of financial

time series. We show that outliers in financial time series associated with the dissemination

of private information contain some economic value as they allow to build a profitable trad-

ing strategy. The strategy is smoother than the Buy&Hold strategy and provides a better

risk adjusted performance in particular in a bear period. However, excess performance

disappears if transaction costs are included.

Among the indicators that are relevant to predict future returns we have three interest-

ing results: first of all the centrality of return to predict return in the short run is confirmed

as the literature on momentum strategies suggests; contrary to the literature on asymmet-

ric/heterogeneous information the bid-ask spread and the trading volume time series do

not contain interesting information; instead a structural break in the autocorrelation of

returns and in the lead-lag relation between return and trading volume turns out to have

an economic value.
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A Naive-Bayes classification algorithm

The goal of the classifier is to predict a class label for a given set of input variables. Suppose

we have K class labels Y1, Y2, . . . , YK and S input variables X1, X2, . . . , XS . If we compute

the conditional probabilities

P(Yk|X1, X2, . . . , XS)

for each label k = 1, . . . ,K, then the class with the highest probability is considered to be

the most likely outcome in the classification exercise. If we use the Bayes Theorem for the

computation of the conditional probability we have

P(Yk|X1, X2, . . . , XS) =
P(X1, X2, . . . , XS |Yk)P(Yk)

P(X1, X2, . . . , XS)

where P(Yk) is the prior (probability) of Yk that can be computed from the data as the

ratio between the number of observations yielding Yk over the total number of observations

in the sample. The computation of P(X1, X2, . . . , XS |Yk)P(Yk) is more complex, especially

as the number of input variables S increases.

The Naive-Bayes approach reduces the computation complexity by considering each

input variable Xs as being independent from the others. Thanks to this assumption

P(Yk|X1, X2, . . . , XS) ∝ P(X1, X2, . . . , XS |Yk)P(Yk) = P(X1|Yk)× . . .× P(XS |Yk)P(Yk)

(3)

as P(X1, X2, . . . , XS) appears in the conditional probability of each class label and has a

normalizing effect in the results.

The label k̄ of the response variable Y with the largest probability computed as in (3)

represents the classification outcome for the classification exercise. This decision rule is

refereed to as the Maximum a Posteriori rule for a classification exercise.

k = argmaxk=1,...,KP(Yk)

S∏
i=1

P(Xi|Yk)

Local distributions P(Xi|Yk) are specified by parameters Θ(Xi, Yk). It is common to assume

each local distribution has a parametric form, such as multinomial for discrete variables,

or gaussian for continuous variables. Assuming a Dirichlet prior for Θ(Xi, Yk) and the

same hyperparameter α for all the local distributions, then the Bayesian estimator can be

obtained as follows in closed form:

Θijk =
Nikj + α

N.k. + riα
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where Nikj is the number of observations such that Xi = j and Y = k. N.k. is the number

of samples in which Y = k. ri is the number of possible values of Xi. α > 0 is a prior

hyper-parameter. Given different values of α the resulting estimate can vary between the

empirical probability
Nijk

N.j.
given by relative frequency (α = 0) and the uniform probability

1
ri

(α >> 0). In this paper we use the bnclassify R package introduced in [50] and assume

α = 1; this technique is called add-one smoothing (or additive smoothing in general). The

goal is to increase the zero or near to zero probability values to a small positive number,

imposing a uniform prior. For instance multiplying the probabilities during inference, a

single zero value can bring down to zero the posterior probability.
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