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Optimal Stopping Time Problems
u Stochastic control problems (H.Föllmer and A.Schied, 2008)

u Optimal stopping time: find the best strategy about when to stop a “game” in order
to maximize an expected reward or minimize an expected cost related to a
stochastic process. The strategy can be any but, to be meaningful, it must be based only
on past and present information

u Let be a stochastic process representing the environment,

let be an admissible strategy (represented by a random variable)

and let be the gain if the game is stopped according to the chosen strategy

u The optimal stopping time problem consists in finding, whenever it exists, a strategy
maximizing the expected gain
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Optimal Stopping Times in Finance

u In finance there are many problems of this type arising for instance when pricing products
known as Bermudan options; these contracts gives the buyer the right to enter a financial
transaction (like buying a security) at a mutually agreed price and at the time which is the
best among a predetermined set

u Simple strategies are those in which we always (or we can only) exercise at one precise 
time    

u The expected gain                  with each of these trivial stopping times 
represents the price of what is called a European option. Often European option prices 
are available as market quotations
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Bermudan vs European Optionality

u European options corresponding to Bermudan exercise dates give less optionality and 
hence their prices are minorants of the price of the Bermudan option

u In particular the price of a Bermudan option is greater than the maximum of the 
corresponding European ones

u In some sense, the more the European option prices are “uncorrelated”, the higher the
price of the Bermudan option. For example, even if at the time     it may not be convenient 
to exercise, nonetheless the probability that it will be profitable to exercise the right at     
could be non negligible. This type of “independence” gives value to Bermudan optionality

u Moreover the European options are the natural hedges of the Bermudan option (Hagan 
2002)
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Numerical Solutions
u Typically Bermudan options are priced solving a recursive algorithm called dynamic
programming, which involves computing conditional expectations at all times

u Dynamic programming in finance is often tackled by means of Trees, or Monte Carlo
techniques. However the computational burden required to obtain the solution can be
non-negligible, especially for high-dimensional systems

u Many Monte Carlo algorithms (J. Barraquand and D. Martineau,1995, M.Brodie and
P.Glasserman,1997, J. N.Tsitsiklis and B. van Roy,2001) have been proposed which, by
introducing some approximations, reduce this complexity, but they are still tied to the
efficiency of the Monte Carlo methods and above all to the computational power
available

u Recently authors (Gaspar et al. 2020, Becker et al.2020, Lapeyre et al.2020) employ
Artificial Neural Networks to solve dynamic programming or to approximate the
optimal exercise boundary. These approaches are nonetheless still based on Monte
Carlo sampling.

u We want to exploit SL algorithms in a new fashion to price Bermudan options
overcoming the computational bottleneck of dynamic programming techniques based
on numerical simulations
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Formulation of the problem

u Our idea is to use Supervised Learning algorithms to catch the functional relationship
between the price of Bermudan option, the relevant European option prices and a 
measure of their correlations, thus avoiding long and complex Monte Carlo simulations

u As a by-product, these algorithms could help us to understand the most important 
driving factors behind the market price 

Information about 
Bermudan option 

(independent variable)

Bermudan option price 
(dependent variable)

Supervised
Learning algorithms
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Interest Rate Swap (IRS) options
u We focus on interest rates derivatives and wish to apply our idea to the pricing of Interest 

Rate Swap Bermudan options (aka Bermudan Swaptions)

u These instruments are relevant as they are embedded in callable debt instruments or 
traded in the OTC market for speculation purposes

u A Bermudan swaptions gives the right to chose the time to enter an Interest Rate 
Swap (IRS) where a series of fixed rate interests are exchanged against floating rate
interests up to a given maturity date

u An IRS is said to be of type payer (receiver) if the fixed rate interests are paid (received)

u The dates at which the IRS can be entered are called option expiries

u We consider products in which, regardless of the date at which the option is exercised, the 
maturity of the IRS is kept the same (co-terminal IRS). The length between the first 
admissible expiry date and the maturity is called tenor

u The time interval from today to the first expiry is the non-call period

u The strike of the option is expressed as the fixed rate of the underlying IRS
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Creation of the dataset 
u As we want to calibrate SL regression algorithms, we wish to use a dataset where the

independent variables span a sufficiently wide range of values

u In particular we want to ensure scenarios with high and low variance/covariances
between the forward prices of co-terminal IRS

u We then built an in-vitro dataset based on a simple short rate model

u The two fundamental pillars for creating our coherent dataset are
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Linear Gaussian One
Factor Model 

(G1++) 
(J.Hull and A.White,1990) 

Least Square Monte 
Carlo (LSMC) 

( F.A. Longstaff and E. S. 
Schwartz,2015)



Linear Gaussian One Factor Model

u Market interest rate curve is recovered by design thanks to displacement function

u Single stochastic factor, used to sample the interest rate curve stochastic dynamics
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We exploit the two G1++ parameters, i.e. speed of mean 
reversion     and volatility     to create many different market 

scenarios that differ in the global level of variances/covariances
between co-terminal IRS



Dataset I
Our in vitro dataset contains a total of 4340 Bermudan 

Swaption prices
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80% training set
(3472 samples) 

20% test set
(868 samples) 

u 10 different pairs of G1++ volatility and speed of mean reversion to
ensure adequate coverage of interest rate curve variance/covariance scenarios
(t=0 curve is kept the same).

u 434 Swaptions for each pair of G1++ parameters { , }. Swaptions differ in
contractual specs (non-call period, tenor, strike)



Dataset II
FEATURES TARGET

1. Bermudan price
1. Tenor

2. Strike 
(shift w.r.t. IRS par-rate in bps)

3. Side 

4. Non-call period

5. Correlation (between 
swap rates)

6. Maximum underlying 
European Swaption 
price
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Supervised 
Learning 
algorithms
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K-Nearest Neighbours (k-NN)

Linear Models:

• Linear Regression
• Ridge Regression
• Lasso Regression

Support Vector Machine (SVM)

Decision Tree

Ensemble of Decision Trees:

• Random Forest (RF)
• Gradient Boosted Regression Tree (GBRT)

Artificial Neural Networks (or Multilayer Perceptron MLP)

We have implemented with scikit-learn
and TensorFlow:
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Results I
u The best performers are Ridge,

MLP and GBRT

u Apart from a few exceptions, the 
result of the comparison between 
two models does not change in a 
relevant way if we observe different 
metrics: “best algorithms are 
always the best” 

u Since in our case the goal was to
predict prices over an extended
range with different scales, we
believe a “relative” metric is
more suitable than an “absolute”
one as it makes the data more
homogeneous

u We can say that the average price
error of the Ridge, equal to 1%, is
an excellent result if compared to
some consensus price services
where the average standard
deviation is roughly 2% of the price
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Results II

u Ridge, GBRT and MLP have the average values of relative error closest to zero with
the lowest standard deviation

u From values of skewness, kurtosis and quantiles these models possess the most
symmetrical error distributions without one-side bias
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Statistics of relative error for each algorithms



Results III

u All the tree-based models have an endogenous feature importance estimator,
while for all the other models an indirect method has been used (permutation
importance)

u Even though with different weights, all models point out the price of the
maximum European swaption as the most relevant feature (lower bound)

u Furthermore, except for the non-call period, the other features have comparable
average values, with the only difference that the correlation has the lowest
standard deviation, a sign that the weights returned by the individual algorithms
are very similar to each other
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Conclusions
u Supervised Learning techniques for the pricing of Bermudan

instruments is promising. They overcome the computational
bottleneck of numerical simulations and help us to understand
the most important driving factors behind the options market
price

u The best models are Ridge, Artificial Neural Network and
Gradient Boosted Regression Tree. The Ridge has the
advantage of having one of the fastest training phase, while the
MLP is the slowest and requires a more accurate tuning of its
hyperparameters. The GBRT require no data preparation
phase and have an internal method for evaluating the
importance of features

u Thanks to feature importance techniques we have confirmed
that the most determining factor for the price of a Bermudan
option is the value of the maximum underlying European
swaption, which constitutes its lower bound

Learning Bermudans - R. Aiolfi 17/20

Comparison for 434 Bermudan swaption*

* On a MacBook Pro (MacOS version 
10.15.7) with an Intel Quad-Core i5 
2.3 GHz processor with a memory of 
2133 MHz and 8GB of RAM 

** With 3472 Bermudan swaption

*** 5 x 10^4 path Monte Carlo for 
each Bermudan swaption

**
***

**

***



Future developments

I. The dataset could be extended/refined

II. Assess model extrapolating capabilities on new scenarios with extreme
variance/covariance values

III. Since it is very challenging to infer the correlations from the market,
our approach could also prove helpful the other way round: it is possible
to estimate correlations from recent market Bermudan swaption
prices and then use them as the input of our algorithms to get today
prices
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Disclaimer
The views and the opinions expressed in this document are those of the 
authors and do not represent those of their employers. They can not be 
held responsible for any use that may be made of these contents. This 
document is written for informative purposes only, it is not intended to 
influence any investment decisions or promote any product or service.
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