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What can machines learn?
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Frank Rosenblatt with a Mark I 
Perceptron computer in 1960
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Worthy reminder: NYT 1958 article on
perceptrons 

5/18/2016

3 COMMENTS

 

A decade before the "AI winter", going by this NYT article on single layer perceptrons, the AI craze was in

full swing.  AI and Machine Learning have made some signi�cant progress in this last decade, but it's

always worth remembering how the marketing of AI will always be way ahead of the true capacity of AI.

While too much undue excitement can hurt a research �eld at times, notice that some of the predictions

about AI agents (recognizing people/faces, language translation) have already become reality today.

ABOUT NEWS RESEARCH BLOG CODE

New York Times 1958

The perceptron
(Rosemblatt ‘57, Minsky Papert ‘69)
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Weights are cyclically 
adjusted in order to minimize 
error
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The circular learning approach where a 
model is automatically learned from 
data through validation and optimization 
is not new

Machine learning method
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Figure 1: The scientific method is a circular process: from observations (data) we
formulate models that make predictions that are tested against further observations, all
all within the principle of parsimony where simpler models are preferred. The people
represented in the images are, from the top right in clockwise order: Nicholas Oresme
(1320-1382); William of Ockham (1285-1347); Galileo Galilei (1564-1642); Johannes Kepler
(1571-1630); Isaac Newton (1643-1727). These are philosophers and natural philosophers
who have greatly contributed to science and to the elaboration of the scientific method.

that can be tested with further observations and can be iteratively refined or be
discarded and changed to obtain better predictions. Prediction, in this context, has
a vast meaning embracing all inferences or relations or gatherings around common
classifications not provided directly by the observations or not provided precisely
by them. Model complexity is another key ingredient; the principle of parsimony
recommends that a simpler model with fewer parameters and fewer assumptions
should be preferred to a more complex model if both produce comparable predictions.
This is an application of the Occam’s razor principle introduced, in the thirteenth
century, by an English Franciscan friar, William of Ockham (pictured on the bottom
right of figure 1).

Epistemologists have repeatedly shown that the scientific method has not been
always rigorously followed by scientists Feyerabend (1975). There are several sit-
uations where the scientific method is hard to apply, for instance, in situations
where experiments cannot be repeated because the system under examination is
unique and evolves with time. Nonetheless, its circular approach, that starts and
ends with observations passing through modeling and prediction, is a very powerful
methodology that has been at the very basis of most of the knowledge about natural
and artificial systems that humankind has acquired in the last five hundred years.
Furthermore, modern day machine learning and artificial intelligence approaches
are rooted in this kind of circular approach and aim to implement it automatically
without the assistance of human scientists. State-of-the-art machine learning and
data-science protocols are expanding the observation part, digging and manipulating
vast datasets; they generate vast quantities of alternative models and they place
more emphasis on prediction and they tend to to give less relevance to parsimony,
but still, the general circular approach remain the same (see fig.2).

4

Scientific method vs. machine learning method

• What is novel is the ‘bottom up’ approach that does not need human 
intuition for the formulation of the model

• Parsimony is no longer central 
• A very large number of models are automatically generated and the 

model selection part becomes central

Data
 Model

Prediction

Selection
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What can machines learn? 
Machine learning, artificial 
intelligence and deep learning had 
an enormous success in recent 
years

Their successful application has 
been mainly in the domain of 
image recognition/manipulation 
and games
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Universal approximation 
theorem
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x h=fNN(x)

|fNN(x) – f(x)| < 𝛆

Reference function
Function aproximated by the 
forward neural network

Cybenko 1989, Hornik 1991

A forward neural network with more than one layer 
can approximate any function as far as the network 
has a large enough number of neurons  
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Recurrent neural networks 
are Turing complete
By adding loops (within a layer or backwards) a 
recurrent neural network is Turing complete and 
therefore it can perform any computation

…
.

…
.
…
.

x h



Can machines learn markets?
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Mercati

Markets
are gigantic 
computation 
environments 
where machines 
and humans 
interact to calculate 
the price of things
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• Markets are complex systems where a large and 
heterogeneous number of variables interact within an 
intricated system of relations

• In markets trades are executed at speeds ranging from 
nanoseconds to years, this are 1015 order of magnitude 
(comparable to our distance to Proxima centaury in 
meters)

• Market variables have statistical properties that are non-
normal with fat-tails power law distributions

• Markets adapt and change, they are not stationary

Markets are complex systems 
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Can machines learn markets? 

Has a machine that can trade successfully learned 
something about the market?

Can we define what does it mean learn in the case of 
markets?

A pragmatic perspective: 
can machines learn to automate tasks so far 
performed by humans?



What can we learn from machines?
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Black boxes?

Black box

Deep learning models return equations or algorithms; these 
are the same kind of outputs of human-made models
They are however extremely complicated being 

• high-dimensional and 
• non-linear



High dimensionality
High dimensional spaces are very different from the low-
dimensional space we live in.
In particular, the subdivision of high-dimensional spaces into 
regions (the basins of optimal solutions) have non-intuitive 
properties    
• Most of the volume of the region is near the surface 
• The number of neighboring regions grows at least exponentially with 

dimension
• The number of interfaces between regions grow combinatorically with 

dimension
• Any ‘gradient descent optimizer’ will be always and unavoidably stuck 

in some saddle-point frontier 
Tomaso Aste and , Denis  Weaire, The pursuit of perfect packing. CRC Press, 2008.
T. Aste, and N. Rivier. "Random cellular froths in spaces of any dimension and curvature." Journal of Physics A: Mathematical and General 28, no. 5 (1995): 1381.
T Aste, "Dynamical partitions of space in any dimension." Journal of Physics A: Mathematical and General 31, no. 43 (1998): 8577.



Linearity
Linear solutions of linear problems are neat and unique, 
they have convenient properties:  

1. Small changes in the input produce proportionally small 
changes in the output

2. Small changes in the solution structure or parameters  
also produce small changes in the output

3. Approximate solutions with similar errors are similar

Non-linear solutions are very different



Non-linearity

Non-linear solutions solutions are very different

1. Small changes in the input can produce very 
large changes in the output

2. Small changes in the solution structure or 
parameters can produce very large changes in 
the output

3. Approximate solutions with similar errors can 
be completely different and there is a 
combinatorial large number of them

Intriguingly, the way 
deep learning 
systems are trained 
(specifically methods 
such as:
data  sampling, drop 
off, knockout, data 
augmentations, loss 
functions, weight 
regularization…)  
seem to overcome 
several of these 
issues, at least in 
some cases. 
We have a lot of to 
learn about how 
these systems 
discover approximate 
solutions



What machines can learn about our complex world -
and what can we learn from them? 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3797711

They learn approximate solutions that are high-dimensional
and non-linear

The structure of the solution tells us very little about the 
model

However, if the learning process if done properly, these 
solutions are quite robust and can work also in 
circumstances different from the training examples



Deep learning the limit Order Book

Experiment 1

A comparative perspective
https://arxiv.org/pdf/2007.07319.pdf
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The Limit Order Book (LOB) is a self-organizing system where a 
large number of players interact with offers and bids and 
eventually agree on a transaction price

Figure 1: Schematic representation of the LOB structure. It is possible to distinguish between the bid side (left) and
the ask side (right), where both are organised into levels. The first level contains the best bid-price and the best ask-
price, respectively. Since the market’s goal is to facilitate the matching of intentions from buyers and sellers, the best
bid-price is defined as the maximum proposed bid price, while the best-ask price is defined as the minimum proposed
ask-price. The distance between best bid-price and best ask-price is commonly referred to as bid-ask spread. The mid-
price is defined as the mean between best bid-price and best ask-price. The lower (higher) the bid-price (ask-price) at
which limit orders are submitted, the deeper the level at which they are placed. The cumulative volume of buy and sell
limit orders determines the market depth. In order-driven markets, the priority of orders to be matched at each price
level depends upon the arrival time, according to a FIFO (First In, First Out) rule [1].

Three main categories of orders exist: market orders, limit orders and cancellation orders. Market orders are executed
at arrival by paying a higher execution cost which originates from crossing the bid-ask spread. Limit orders make
up the liquidity of the LOB at different price levels and constitute an expression of the intent to buy or sell a given
quantity vp at a specific price p. These entail lower transaction costs, with the risk of the order not being fulfilled.
Cancellation orders are used to partially or fully remove limit orders which have not been filled yet.

The study of order arrival and dynamics of the Limit Order Book and of order-driven markets has seen a growing
interest in the academic literature as well as in the industry. This sparked from the almost simultaneous spreading
of electronic trading and high frequency trading (HFT) activity throughout global markets. The resulting increase in
frequency of the trading activity has generated a growing amount of trading data thereby creating the critical mass for
Big Data applications.

The availability of Big Data from High Frequency Trading has then made it possible to apply the data hungry Machine
Learning and Deep Learning methods to financial markets. Machine Learning methods were initially adopted by hedge
funds towards the end of the last century, while now adoption is expanding and it is possible to see large quantitative
firms and leading investment banks openly applying AI methods. Building upon this growing interest, an increasing
number of papers and theses exploring Machine Learning and Deep Learning methods applied mostly to financial
markets are being written. This is part of the modern trend where large companies lead research fields in AI due
to the availability of computational and monetary resources [17, 30]. This often results in a literature dominated by
increasingly complex and task-specific model designs, often conceived adopting an applicative approach without an
in-depth analysis of the theoretical implications of obtained results.

2

10 levels on the buy side

10 levels on the sell side

About 10 transactions 
per second for liquid 
assets on NASDAQ 

The limit order book (LOB)
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INPUT
LOB prices and 
volumes for 10 
previous ticks
400-dimesions

OUTPUT 
Transaction 
price range at 
a given 
horizon
3-dimensions

Machine 
learning 
system

(7 models)

Training with 18 million examples

Testing with 6 million 
datapoints

The machine learning system
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Data: 
NASDAQ, Intel Corp. (INTC) LOB data 
Period: 

training 3 months: 
04-02-2019 to 31-05-2019   ->  ~ 18 million transactions

testing 1 month:  
03-06-2019 to 28-06-2019  ->   ~  6 million transactions

Multinomial Logistic Regression is used as a baseline for this work and consists in a linear combination of the inputs
mapped through a logit activation function, as defined in [19]. Feedforward Neural Networks (or Multilayer Per-
ceptrons) are defined in [22] and constitute the general framework to represent non-linear function mappings between
a set of input variables and a set of output variables. Recurrent Neural Networks (RNNs) [31] are considered in the
form of Long-Short Term Memory models (LSTMs) [23]. RNNs constitute an evolution of MLPs. They introduce
the concept of sequentiality into the model including edges which span adjacent time steps. RNNs suffer from the
issue of vanishing gradients when carrying on information for a large number of time steps. LSTMs solve this issue
by replacing nodes in the hidden layers with self-connected memory cells of unit edge weight which allow to carry
on information without vanishing or exploding gradients. LSTMs hence owe their name to the ability to retain infor-
mation through a long sequence. The addition of Attention mechanisms [39] to MLPs helps the model to focus more
on relevant regions of the input data in order to make predictions. Self-Attention extends the parametric flexibility of
global Attention Mechanisms by introducing an Attention mask that is no longer fixed, but a function of the input. The
last kind of Deep Learning unit considered are Convolutional Neural Networks (CNNs), designed to process data with
grid-like topology. These unit serve as feature extractors, thus learning feature representations of their inputs [29].

A considerable body of literature about comparison of different models has been produced, despite not being vastly
applied by the Machine Learning community. The first attempts of formalisation were made by Ditterich [15] and
Salzberg [35], and refined by Nadau and Bengio [33] and Alpaydm [2]. A comprehensive review of all these methods
and of classical statistical tests for Machine Learning is presented in [25]. A crucial point of view is provided by
the work [13]. More recently, starting from the work by Corani and Benavoli [12], a Bayesian approach to statistical
testing was proposed to replace classical approaches based on the null hypothesis. The proposed new ideas found a
complete definition in [4].

3 Dataset

All the experiments presented in this paper are based on the usage of the LOBSTER [24] dataset, which provides a
highly detailed, event-by-event description of all micro-scale market activities for each stock listed on the NASDAQ
exchange. LOBSTER is one of the data providers featured in some major publications and journals in this field. LOB
datasets are provided for each security in the NASDAQ. The dataset lists every market order arrival, limit order arrival
and cancellation that occurs in the NASDAQ platform between 09:30 am – 04:00 pm on each trading day. Trading
does not occur on weekends or public holidays, so these days are excluded from all the analyses performed. A tick size
of ✓ = $0.01 is adopted. Depending on the type of the submitted order, orders can be executed at the lower cost equals
of $0.005. This is the case of hidden orders which, when revealed, appear at a price equal to the notional mid-price at
the time of execution.

LOBSTER [24] data are structured into two different files:

• The message file lists every market order arrival, limit order arrival and cancellation that occurs.

• The orderbook file describes the market state (i.e. the total volume of buy or sell orders at each price)
immediately after the corresponding event occurs.

Experiments described in the next few sections are performed only using the orderbook files. The training dataset
consists of Intel Corporation’s (INTC) LOB data from 04-02-2019 to 31-05-2019, corresponding to a total of 82 files,
while the test dataset consists of Intel Corporation’s LOB data from 03-06-2019 to 28-06-2019, obtained from 20
other files. It is relevant to highlight that INTC is representative of a large tick stock, these are stocks where the tick
size is relative large compared to the price. These stocks present a range of specific characteristics in their LOB and
trading dynamics and have been observed to be more predictable, through Deep Learning models, than small tick
stocks. Hence, most of the market microstructure-related AI literature considers large tick stocks. All the experiments
presented in the current work are conducted on snapshots of the LOB with a depth (number of tick size-separated limit
order levels per side of the Order Book) of 10. This means that each row in the orderbook files corresponds to a vector
of length 40. Each row is structured as

[(p, v)a0 , (p, v)
b
0, (p, v)

a
1 , (p, v)

b
1, ... , (p, v)

a
10, (p, v)

b
10], (1)

where (p, v) represents the price level and corresponding liquidity tuple, {a, b} distinguish ask and bid levels progres-
sively further away from the best ask and best bid.

4

20 levels of LOB
xt = 40-dimensions

Input

10 previous ticks   (xt-9,…xt ) 
Overall a vector of 400-dimesions
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Figure 3 reports the training and test set quantile distributions per horizon H�⌧ .

Figure 3: Training and test set quantile (q�1, q0, q+1) distributions per horizon H�⌧ |�⌧ 2 {10, 50, 100} at the end of
the preprocessing and labelling phase. Tables’ entries, for both the training and the test set, report the exact number of
samples per horizon, for each considered quantile.

It is possible to notice moderately balanced classes for both plots in Figure 3. Indeed, all classes lie within the same
order of magnitude (107) for all horizons H�⌧ |�⌧ 2 {10, 50, 100} with the q0 class being the most represented and
q+1 the least.

4.3 Random Model

The benchmark null model for this work is a generic random model, which does not handle any dynamics. For each
sample in the test set and each horizon H�⌧ , the quantile label qr is sampled from the uniform distribution over
r 2 {�1, 0, 1}. The SciPy [40] randint generator is used for this task.

4.4 Naive Model

In order to ensure a fair comparison, the benchmark naive model for this work improves upon the model in Section
4.3 by overfitting to the most present class in the training set (See Figure 3). For each sample in the test set and each
horizon H�⌧ , the predicted quantile label qr is hence always q0.

4.5 Logistic Regression

The baseline model is represented by the multinomial Logistic Regression which, as the Random Model, does not
explictly model any dynamics in the data. Like binary Logistic Regression, the multinomial one adopts maximum
likelihood estimation to evaluate the probability of categorical membership. It is also known as Softmax Regression
and can be interpreted as a classical ANN, as per the definition in Table 1, with the input layer directly connected to
the output layer with a softmax activation function:

softmax(xi) =
e
xi

P
j e

xj
. (7)

The input is represented by the ten most recent LOB states as per the definition is Equation 1 in Section 3. Also this
model is not able to handle any specific dynamics. The Scikit-Learn [34] implementation is used and, in order to
guarantee a fair comparison with the Deep Learning models in the next sections, the following parameters are set as
follows:

• max_iter (i.e. maximum number of iterations taken for the solvers to converge) = 20.
• tol (i.e. the tolerance for stopping criteria) = e

�1.
• solver (i.e. the algorithm to use in the optimization problem) = sag with the default L2 penalty.

6

4 Methods

4.1 Price change horizons

Price log-returns for the target labels are defined at three distinct time horizons H�⌧ . In order to account for price
volatility and discount long periods of stable and noisy order flow, the time delay between the LOB observation (input)
and the target label return �⌧ is defined as follows.

Given a series of mid-prices at consecutive ticks

pm,0, pm,1, ... , pm,n, (2)

the mid-price is defined as the mean between the best bid and best ask price. The series of log-returns is

rm,0, rm,1, ... , rm,n�1, (3)

where

rm,0 = log pm,1 � log pm,0. (4)

The number of non-zero log-returns in the series is hence counted as:

�⌧ =
n�1X

k=0

⇥(|rm,k|), (5)

where ⇥ is the Heaviside step function defined below

⇥(x) =

⇢
1 if x > 0
0 if x  0.

(6)

4.2 Data preprocessing and labelling

The data described in Section 3 are preprocessed as follows:

• The target labels for the prediction task aim to categorise the return at three different time horizons H�⌧ |�⌧ 2
{10, 50, 100}. In order to perform the mapping from continuous variables into discrete classes, the following
quantile levels (0., 0.25, 0.75, 1.) are computed on the returns distribution of the training set and then applied
to the test set. These quantiles are mapped onto classes, denoted with (q�1, q0, q+1) as reported in Figure 2.

Figure 2: Visual representation of the mapping between quantiles and corresponding classes. Quantiles’ edges (i.e.
(0., 0.25, 0.75, 1.)) define three different intervals. Each specific class (i.e. q�1, q0, q+1) corresponds to a specific
interval.

• The training set input data (LOB states) are scaled within a (0, 1) interval with the min-max scaling algorithm
[34]. The scaler’s training phase is conducted by chunks to optimise the computational effort. The trained
scaler is then applied to the test data.

5

Probability of transaction after 10, 50 or 100 ticks at a price 
within a given quantile range established from the training set

Output

Horizons 
10, 50, 100 ticks
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CNN-LSTM
LOB

Quantile probability

About 60 
thousands 
parameters

Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 10, 40)]     0                                            
__________________________________________________________________________________________________
reshape (Reshape)               (None, 10, 40, 1)    0           input_1[0][0]                    
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 10, 20, 16)   48          reshape[0][0]                    
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU)         (None, 10, 20, 16)   0           conv2d[0][0]                     
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 10, 20, 16)   1040        leaky_re_lu[0][0]                
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 10, 20, 16)   1040        conv2d_1[0][0]                   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 10, 10, 16)   528         conv2d_2[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 10, 10, 16)   0           conv2d_3[0][0]                   
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 10, 10, 16)   1040        leaky_re_lu_1[0][0]              
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 10, 10, 16)   1040        conv2d_4[0][0]                   
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 10, 1, 16)    2576        conv2d_5[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 10, 1, 16)    0           conv2d_6[0][0]                   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 10, 1, 16)    1040        leaky_re_lu_2[0][0]              
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 10, 1, 16)    1040        conv2d_7[0][0]                   
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 10, 1, 32)    544         conv2d_8[0][0]                   
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 10, 1, 32)    544         conv2d_8[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 10, 1, 32)    0           conv2d_9[0][0]                   
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 10, 1, 32)    0           conv2d_11[0][0]                  
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 10, 1, 16)    0           conv2d_8[0][0]                   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 10, 1, 32)    3104        leaky_re_lu_3[0][0]              
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 10, 1, 32)    5152        leaky_re_lu_5[0][0]              
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 10, 1, 32)    544         max_pooling2d[0][0]              
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 10, 1, 32)    0           conv2d_10[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU)       (None, 10, 1, 32)    0           conv2d_12[0][0]                  
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU)       (None, 10, 1, 32)    0           conv2d_13[0][0]                  
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 10, 1, 96)    0           leaky_re_lu_4[0][0]              

leaky_re_lu_6[0][0]              
leaky_re_lu_7[0][0]              

__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 10, 96)       0           concatenate[0][0]                
__________________________________________________________________________________________________
lstm (LSTM)                     (None, 64)           41216       reshape_1[0][0]                  
__________________________________________________________________________________________________
dense (Dense)                   (None, 3)            195         lstm[0][0]                       
==================================================================================================
Total params: 60,691
Trainable params: 60,691
Non-trainable params: 0
__________________________________________________________________________________________________

Z. Zhang, S. Zohren, and S. Roberts. 
“DeepLOB: Deep Convolutional 
Neural Networks for Limit Order 
Books”. In: IEEE Transactions on 
Signal Processing 67.11 (June 2019), 
pp. 3001–3012
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1. Random Model – uniform probability outcome prediction
2. Naive Model – output most represented in training
3. Logistic Regression – simple perceptron
4. Multilayer Perceptron – deep learning model 
5. Shallow LSTM – deep learning with memory
6. Self-Attention LSTM – deep learning with memory & loop 
7. CNN-LSTM – state of the art deep learning

Models
Can a Multilayer Perceptron learn the LOB efficiently?
And how will it do with respect to other simpler and more 
complicated models?

We investigate and compare 7 different models with increasing 
levels of complexity
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q

Over 2 million 
parameters

Multilayer perceptron
LOB

Quantile probability

Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 10, 40)]          0         
_________________________________________________________________
flatten (Flatten)            (None, 400)               0         
_________________________________________________________________
dense (Dense)                (None, 400)               160400    
_________________________________________________________________
dense_1 (Dense)              (None, 512)               205312    
_________________________________________________________________
dense_2 (Dense)              (None, 1024)              525312    
_________________________________________________________________
dense_3 (Dense)              (None, 1024)              1049600   
_________________________________________________________________
dense_4 (Dense)              (None, 64)                65600     
_________________________________________________________________
dense_5 (Dense)              (None, 3)                 195       
=================================================================
Total params: 2,006,419. Trainable params: 2,006,419, Non-trainable params: 0
_________________________________________________________________
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1

One-layer perceptron (x0=1)
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Shallow LSTM 

LOB

Quantile probability

400                   20 3

…
. …

.

x
q

About 5 
thousands 
parameters

Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 10, 40)]          0         
_________________________________________________________________
lstm (LSTM)                  (None, 20)                4880      
_________________________________________________________________
dense (Dense)                (None, 3)                 63        
=================================================================
Total params: 4,943
Trainable params: 4,943
Non-trainable params: 0
_________________________________________________________________
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Self-Attention LSTM –
LOB

Quantile probability

About 25 
thousands 
parameters
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 10, 40)]     0                                            
__________________________________________________________________________________________________
lstm (LSTM)                     (None, 10, 40)       12960       input_1[0][0]                    
__________________________________________________________________________________________________
attention_score_vec (Dense)     (None, 10, 40)       1600        lstm[0][0]                       
__________________________________________________________________________________________________
last_hidden_state (Lambda)      (None, 40)           0           lstm[0][0]                       
__________________________________________________________________________________________________
attention_score (Dot)           (None, 10)           0           attention_score_vec[0][0]        

last_hidden_state[0][0]          
__________________________________________________________________________________________________
attention_weight (Activation)   (None, 10)           0           attention_score[0][0]            
__________________________________________________________________________________________________
context_vector (Dot)            (None, 40)           0           lstm[0][0]                       

attention_weight[0][0]           
__________________________________________________________________________________________________
attention_output (Concatenate)  (None, 80)           0           context_vector[0][0]             

last_hidden_state[0][0]          
__________________________________________________________________________________________________
attention_vector (Dense)        (None, 128)          10240       attention_output[0][0]           
__________________________________________________________________________________________________
dense (Dense)                   (None, 3)            387         attention_vector[0][0]           
==================================================================================================
Total params: 25,187
Trainable params: 25,187
Non-trainable params: 0
__________________________________________________________________________________________________
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Model Details
The models range a parameter space dimension from zero 
to one million 

Model Input
Number of
layers (⇤)

Number of
parameters(⇤⇤)

Learning
rate

Training
epochs

Random - 0 0 � -

Naive LOB 1 1 � -

Logistic Reg. LOB 2 4⇥ 10
2

10
�3

30

MLP LOB 7 2.0⇥ 10
6

10
�3

30

Shallow LSTM LOB 3 4.9⇥ 10
3

10
�3

30

Self-Attention LSTM LOB 4 2.5⇥ 10
4

10
�3

30

CNN-LSTM LOB 28 6.0⇥ 10
4

10
�3

30

Table 1: Summary of the inputs and hyperparameters used in the models in this

article.
(⇤)

The number of layers includes the input and the output layer.
(⇤⇤)

The

number of parameters is approximated to the nearest order of magnitude and

truncated for readability.

1
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Performance metrics 

We tested performances of the prediction for each 
of the quantile regions by computing: 
Precision, Recall and F-measure

In order to correct for class imbalance we also tested: 
balanced Accuracy, weighted Precision, weighted 
Recall and weighted F-score

Furthermore, two multi-class correlation metrics between 
forecasted and real labels computed: 
Matthews Correlation Coefficient (MCC) and Cohen’s Kappa 
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considerations, one expects to obtain analogous results to the presented Bayesian test. Future work shall include
additional tests.

Figure 4: Radar plot comparison of the model described in Section 4. For each model (different color triangles) a
closer node to the outer boundary of the scale indicates a higher value of the corresponding metric. The plot hence
provide an intuitive understanding of model superiority and whether this is consistent throughout metrics. From this
figure it is evident that the MLP performs best, according to the three measures considered.

Table 7: Performance metrics for horizons H�⌧ computed on the test folds. The column labels H10, H50, H100 refer
to H�⌧ |�⌧ = 10, H�⌧ |�⌧ = 50, H�⌧ |�⌧ = 100, respectively.

Random Model Naive Model Logistic Regression Shallow LSTM Self-Attention LSTM CNN-LSTM Multilayer Perceptron

H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100

Balanced Accuracy 0.33 0.33 0.33 0.33 0.33 0.33 0.46 0.47 0.53 0.47 0.51 0.38 0.55 0.42 0.52 0.57 0.56 0.55 0.56 0.59 0.61
Weighted Precision 0.41 0.41 0.41 0.16 0.30 0.30 0.54 0.56 0.62 0.58 0.57 0.65 0.61 0.50 0.47 0.62 0.61 0.61 0.62 0.62 0.63

Weighted Recall 0.33 0.33 0.33 0.40 0.55 0.54 0.59 0.59 0.61 0.58 0.58 0.57 0.61 0.45 0.34 0.62 0.62 0.62 0.62 0.63 0.63
Weighted F-Measure 0.34 0.35 0.35 0.23 0.40 0.39 0.53 0.53 0.60 0.51 0.57 0.47 0.60 0.40 0.24 0.62 0.61 0.61 0.61 0.62 0.63

Precision quantile [0, 0.25] 0.26 0.26 0.26 0 0 0 0.57 0.57 0.57 0.57 0.56 0.58 0.60 0.37 0.55 0.59 0.59 0.59 0.59 0.59 0.59
Precision quantile [0.25, 0.75] 0.55 0.55 0.55 0.40 0.55 0.54 0.59 0.60 0.63 0.59 0.62 0.56 0.62 0.55 0.52 0.65 0.64 0.63 0.64 0.66 0.67

Precision quantile [0.75, 1] 0.20 0.20 0.20 0 0 0 0.31 0.38 0.58 0.57 0.43 0.97 0.57 0.52 0.26 0.57 0.57 0.57 0.59 0.58 0.57

Recall quantile [0, 0.25] 0.33 0.33 0.33 0 0 0 0.55 0.59 0.59 0.06 0.62 0.22 0.35 0.81 0.62 0.54 0.55 0.53 0.60 0.59 0.60
Recall quantile [0.25, 0.75] 0.33 0.33 0.33 1 1 1 0.82 0.81 0.76 0.85 0.69 0.93 0.76 0.44 0.01 0.71 0.72 0.74 0.74 0.70 0.68

Recall quantile [0.75, 1] 0.33 0.33 0.33 0 0 0 0 0 0.23 0.51 0.23 0 0.53 0.004 0.92 0.46 0.42 0.39 0.34 0.46 0.54

F-Measure quantile [0, 0.25] 0.29 0.29 0.29 0 0 0 0.56 0.57 0.58 0.11 0.59 0.31 0.44 0.503 0.58 0.57 0.57 0.56 0.59 0.59 0.59
F-Measure quantile [0.25, 0.75] 0.42 0.42 0.42 0.57 0.71 0.70 0.70 0.70 0.68 0.69 0.65 0.70 0.68 0.489 0.02 0.68 0.68 0.68 0.69 0.68 0.67

F-Measure quantile [0.75, 1] 0.25 0.25 0.25 0 0 0 0 0 0.33 0.54 0.30 0 0.55 0.009 0.40 0.51 0.48 0.46 0.43 0.51 0.56

MCC 0 0 0 0 0 0 0.24 0.25 0.30 0.23 0.27 0.14 0.31 0.120 0.25 0.34 0.34 0.32 0.34 0.36 0.38
Cohen’s Kappa 0 0 0 0 0 0 0.21 0.22 0.30 0.20 0.27 0.10 0.30 0.105 0.16 0.34 0.33 0.32 0.33 0.36 0.38

6 Discussion

This section builds upon the results in Section 5 and delves deeper into the analysis of model similarities and individual
dimension-based model performances. A better Deep Learning-based understanding of LOB dynamics and modeling
applications emerges from this.

Delving deeper into the analysis of model performances, the plots for the different prediction horizons in Figure 4
show how the MLP outperforms the CNN-LSTM throughout metrics and horizons (or performs analogously). A
second group of models is represented by Logistic Regression and Shallow LSTM for horizons H�⌧ |�⌧ 2 {10, 50}.

10

Results

Performances at three horizons: 10, 50, 100  ticks
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considerations, one expects to obtain analogous results to the presented Bayesian test. Future work shall include
additional tests.

Figure 4: Radar plot comparison of the model described in Section 4. For each model (different color triangles) a
closer node to the outer boundary of the scale indicates a higher value of the corresponding metric. The plot hence
provide an intuitive understanding of model superiority and whether this is consistent throughout metrics. From this
figure it is evident that the MLP performs best, according to the three measures considered.

Table 7: Performance metrics for horizons H�⌧ computed on the test folds. The column labels H10, H50, H100 refer
to H�⌧ |�⌧ = 10, H�⌧ |�⌧ = 50, H�⌧ |�⌧ = 100, respectively.

Random Model Naive Model Logistic Regression Shallow LSTM Self-Attention LSTM CNN-LSTM Multilayer Perceptron

H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100 H10 H50 H100

Balanced Accuracy 0.33 0.33 0.33 0.33 0.33 0.33 0.46 0.47 0.53 0.47 0.51 0.38 0.55 0.42 0.52 0.57 0.56 0.55 0.56 0.59 0.61
Weighted Precision 0.41 0.41 0.41 0.16 0.30 0.30 0.54 0.56 0.62 0.58 0.57 0.65 0.61 0.50 0.47 0.62 0.61 0.61 0.62 0.62 0.63

Weighted Recall 0.33 0.33 0.33 0.40 0.55 0.54 0.59 0.59 0.61 0.58 0.58 0.57 0.61 0.45 0.34 0.62 0.62 0.62 0.62 0.63 0.63
Weighted F-Measure 0.34 0.35 0.35 0.23 0.40 0.39 0.53 0.53 0.60 0.51 0.57 0.47 0.60 0.40 0.24 0.62 0.61 0.61 0.61 0.62 0.63

Precision quantile [0, 0.25] 0.26 0.26 0.26 0 0 0 0.57 0.57 0.57 0.57 0.56 0.58 0.60 0.37 0.55 0.59 0.59 0.59 0.59 0.59 0.59
Precision quantile [0.25, 0.75] 0.55 0.55 0.55 0.40 0.55 0.54 0.59 0.60 0.63 0.59 0.62 0.56 0.62 0.55 0.52 0.65 0.64 0.63 0.64 0.66 0.67

Precision quantile [0.75, 1] 0.20 0.20 0.20 0 0 0 0.31 0.38 0.58 0.57 0.43 0.97 0.57 0.52 0.26 0.57 0.57 0.57 0.59 0.58 0.57

Recall quantile [0, 0.25] 0.33 0.33 0.33 0 0 0 0.55 0.59 0.59 0.06 0.62 0.22 0.35 0.81 0.62 0.54 0.55 0.53 0.60 0.59 0.60
Recall quantile [0.25, 0.75] 0.33 0.33 0.33 1 1 1 0.82 0.81 0.76 0.85 0.69 0.93 0.76 0.44 0.01 0.71 0.72 0.74 0.74 0.70 0.68

Recall quantile [0.75, 1] 0.33 0.33 0.33 0 0 0 0 0 0.23 0.51 0.23 0 0.53 0.004 0.92 0.46 0.42 0.39 0.34 0.46 0.54

F-Measure quantile [0, 0.25] 0.29 0.29 0.29 0 0 0 0.56 0.57 0.58 0.11 0.59 0.31 0.44 0.503 0.58 0.57 0.57 0.56 0.59 0.59 0.59
F-Measure quantile [0.25, 0.75] 0.42 0.42 0.42 0.57 0.71 0.70 0.70 0.70 0.68 0.69 0.65 0.70 0.68 0.489 0.02 0.68 0.68 0.68 0.69 0.68 0.67

F-Measure quantile [0.75, 1] 0.25 0.25 0.25 0 0 0 0 0 0.33 0.54 0.30 0 0.55 0.009 0.40 0.51 0.48 0.46 0.43 0.51 0.56

MCC 0 0 0 0 0 0 0.24 0.25 0.30 0.23 0.27 0.14 0.31 0.120 0.25 0.34 0.34 0.32 0.34 0.36 0.38
Cohen’s Kappa 0 0 0 0 0 0 0.21 0.22 0.30 0.20 0.27 0.10 0.30 0.105 0.16 0.34 0.33 0.32 0.33 0.36 0.38

6 Discussion

This section builds upon the results in Section 5 and delves deeper into the analysis of model similarities and individual
dimension-based model performances. A better Deep Learning-based understanding of LOB dynamics and modeling
applications emerges from this.

Delving deeper into the analysis of model performances, the plots for the different prediction horizons in Figure 4
show how the MLP outperforms the CNN-LSTM throughout metrics and horizons (or performs analogously). A
second group of models is represented by Logistic Regression and Shallow LSTM for horizons H�⌧ |�⌧ 2 {10, 50}.
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Results

q+1. Analysing results in Tables 8 and 9, it is possible to note that there is no reason to place the current experiment
in the same cluster as the Shallow-LSTM, as they are never statistically equivalent. It is clear that for different
horizons H�⌧ |�⌧ 2 {10, 50, 100}, the model shows completely different behaviours. For horizon H�⌧ |�⌧ = 10
it is statistically equivalent to the state-of-the-art methods which will be described in the next paragraph, but for
H�⌧ |�⌧ 2 {50, 100} there is no similarity to these models. This is the reason why the Attention-LSTM model is
placed at the intersection of all clusters.

General performances for CNN-LSTM and MLP models are comparable to the ones for horizon H�⌧ |�⌧ = 10 in the
Shallow-LSTM model. The difference with the Shallow-LSTM experiment, making CNN-LSTM and MLP models
state-of-the-art, must be searched in their ability to maintain stable, high performances throughout horizons H�⌧ .
Here too the higher values of weighted precision and recall for both the considered models, indicate the ability to
correctly classify a significant number of samples associated with different target classes. Such an ability not only
concerns higher level performance metrics, but is reflected in fine-grained per-class performance metrics as well. For
different horizons H�⌧ |�⌧ 2 {10, 50, 100}, homogeneous class-specific weighted precision and recall are observed.
The greater ability of these two models to correctly predict test samples is also shown by their highest values for
Matthews Correlation Coefficient and Cohen’s Kappa, indicating a better overlap between predictions and the ground
truth. A statistical equivalence between these models throughout metrics and horizons arises from the results presented
in Tables 8 and 9.

Table 8: Ranking representation of results from the Bayesian correlated t-test [4] based on the MCC performance
metric. Models on the same line indicate statistical equivalence and models in lower rows perform worse (statistically
significant) than the ones in the upper rows.

H�⌧ |�⌧ = 10 H�⌧ |�⌧ = 50 H�⌧ |�⌧ = 100

Multilayer Perceptron
CNN - LSTM

Multilayer Perceptron
CNN - LSTM

Multilayer Perceptron
CNN - LSTM

Self-Attention LSTM Shallow LSTM
Multinomial Logistic Regression Multinomial Logistic Regression

Shallow LSTM
Multinomial Logistic Regression Self-Attention LSTM Self-Attention LSTM

Naive Model
Random Model

Naive Model
Random Model Shallow LSTM

Random Model

Table 9: Ranking representation of results from the Bayesian correlated t-test [4] based on the F-measure performance
metric. Models on the same line indicate statistical equivalence and models in lower rows perform worse (statistically
significant) than the ones in the upper rows.

H�⌧ |�⌧ = 10 H�⌧ |�⌧ = 50 H�⌧ |�⌧ = 100

Multilayer Perceptron
CNN - LSTM

Self-Attention LSTM

Multilayer Perceptron
CNN - LSTM Multilayer Perceptron

Shallow LSTM
Multinomial Logistic Regression Shallow LSTM CNN - LSTM

Multinomial Logistic Regression

Naive Model Multinomial Logistic Regression Shallow LSTM

Random Model Self-Attention LSTM Self-Attention LSTM

Naive Model Naive Model

Random Model Random Model

7 Conclusions

In the present work, different Deep Learning models are applied to the task of price return forecasting in financial
markets based on the Limit Order Book. LOBSTER data is used to train and test the Deep Learning models which are
then analysed in terms of results, similarities between the models, performance ranking and dynamics-based model
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Bayesian correlated t-test from MCC measure

Bayesian correlated t-test from F measure

• Multilayer perceptron is 
the best performing

• CNN-LSTM is second-
best with comparable 
performances

• Logistic regression has 
good performances 
comparable with LSTM 
and self-attention LSTM

• Naïve and Random are 
worst



Appendices

A Bayesian-based model clustering

Figure 5: Schematic clustering solution for models presented in Section 4. Similarities between models’ performances
are tested using the Bayesian Correlated t-test described by Benavoli et al. [4]. Models contained in the same cluster
component perform statistically equivalent based on MCC and weighted F-measure metrics. The higher intensity in
cluster shading indicates an increase in models performances.
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Naive

Results
One can attempt to 
cluster the models 
together based on their 
performances

One can note that 
memory/recurrent loops 
(LSTM) play little role in 
performances. Most of 
the information is 
processed forwards from 
the LOB input  



Deep learning the limit Order Book

Experiment 2

Reinforcement Learning
https://arxiv.org/abs/2101.07107

14/06/2021 T Aste, UCL 2019 40



14/06/2021

41

Reinforcement 
learning 

algorithm

Training with ~6 millions 
selected examples

Reward

INPUT
LOB prices and 
volumes for 10 
previous ticks
400-dimesions

OUTPUT 
Action:
1. Sell, 
2. stay, 
3. buy, 
4. stop_loss

Testing with 6 million 
examples
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Deep reinforcement learning: architecture

…
.

…
.

…
.

x …
.

…
.

4002 +3 64  64 4 

About 30,000 parameters

Sell 
stay 
Buy
stop_loss

Q sell stay buy Stop_loss

neutral

Long

short
Reward

Profits of the ‘agent’ depending on the action 

The algorithm buys 
or sells or holds 
one unit of Intel 
Corporation stock 
(INTC) on 
NASDAQ during 
the month of June 
2019 
It is trained during 
the previous 3 
months

Gaussian process regressor

Q-learning 
approach
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Deep reinforcement learning: training

We train on 25 selected 
significant events containing  
about 250,000 ticks 

• Training on 60 days 
04/02/2019-30/04/2019

• Validation on 22 days 
01/05/2019-31/05/2019

• Testing on 20 days 
03/06/2019-28/06/2019

…
.

…
.

…
.

x …
.

…
.

4002 +3 64  64 4 

About 30,000 parameters

Sell 
stay 
Buy
stop_loss

Q sell stay buy Stop_loss

neutral

Long

short
Reward

Profits of the ‘agent’ depending on the action 

Gaussian process regressor
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Deep reinforcement learning: input
We test for three sets of 
input information; all 
have the full LOB (400 
dimension) plus:

1. State of the agent
2. State of the agent & 

market price minus price 
paid for the unit (mark to 
market profit) 

3. State of the agent & price 
paid for the unit (mark to 
market) & bid-ask spread

…
.

…
.

…
.

x …
.

…
.

4002 +3 64  64 4 

About 30,000 parameters

Sell 
stay 
Buy
stop_loss

Q sell stay buy Stop_loss

neutral

Long

short
Reward

Profits of the ‘agent’ depending on the action 

Gaussian process regressor



14/06/2021 T Aste, UCL 2019

Deep reinforcement learning: performances

0 2 4 6

Tick time (LOB updates) ⇥106

0.0

0.5

1.0

Cu
m

ul
at

iv
e

P&
L

($
)

⇥103

(a) (b) (c)

Fig. 2. Cumulative mean return across the 30 ensemble elements (a), daily mean cumulative return and standard deviation (b) and trade return distribution
(c) for the full test (20 days) and agent state definition Sc201 .

(a) (b) (c)

Fig. 3. Cumulative mean return across the 30 ensemble elements (a), daily mean cumulative return and standard deviation (b) and trade return distribution
(c) for the full test (20 days) and agent state definition Sc202 .

(a) (b) (c)

Fig. 4. Cumulative mean return across the 30 ensemble elements (a), daily mean cumulative return and standard deviation (b) and trade return distribution
(c) for the full test (20 days) and agent state definition Sc203 .

VI. CONCLUSIONS

In the present work we showed how to to successfully train
and deploy DRL models in the context of high frequency
trading. We investigate how three different state definitions
affect the out-of-sample performance of the agents and we
find that the knowledge of the mark-to-market return of their
current position is highly beneficial both for the global P&L
function and for the single trade reward. However, it should be
noticed that, independently on the state definition, the agents
are always able to “beat the market”and achieve a net positive
profit in the whole training sample considered and in most of
the single trading days it is composed of.

Even if we have considered an agent who buys at the best
bid and sells at the best ask (and therefore needs to pay the
spread to close a position), the exercise here performed is

only a first attempt to realistically employ DRL algorithm in a
markedly non-stationary environment as the Limit Order Book
and financial markets. First of all, we considered an agent who
is able to trade only one single unit of the underlying asset. As
a result, we safely considered zero the impact of its own trades
on the market. However, it is well known that in a realistic
setting, where multiple units of the underlying asset can be
bought and sold, the impact of our own trades influences in
a severe way the final profit of a strategy. Nevertheless, the
very own fact that, even in a simplistic setting, a DRL agent
can potentially perform well in a highly stochastic and non-
stationary environment is worth noticing per se. Further, the
ability to produce out of sample profitable strategies shows that
temporary market inefficiencies exists and can be exploit to
produce long lasting profits and therefore adds a proof against
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What the agent learned?

• The agent increases profits by about 100 folds by 
trading 10 to 100 times more often using information 
about the reference unit price (mark to market). The 
agent learns to increase profits while increasing trading 
frequency despite the bid-ask spread cost  

• Risk is reduced considerably
• The extra information on the bid-ask spread does not 

increase performances
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Conclusions
• Artificial intelligence is providing increasingly powerful 

new instruments
• It is almost a surprise that a complicated self-trained 

machine, such as the Multi Layer Perception, can learn 
something about the price formation mechanism on the 
LOB

• It is almost a surprise that a self-learning agent can 
discover trading strategies 

• Results are very good but not ground-breaking. Are we 
at the beginning or at the end of this journey?
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