Deep learning the
Limit Order Book
What machines can learn &

What can we learn form them?

=
il

TR FINANCIAL
Tomaso Aste COMPUTING

14/06/2021



F . . I The Financial Computing and Analytics research group

INancia & investigates socio- economic systems using methods from
. computer science, applied mathematics, computational statistics

Computing P PP P

and network theory.
and FINANCIAL

Analytics
Group

UCL
Centre for Blockchain
Technologies

Silvia Bartolucci  Philip Treleaven Guido Germano Fabio CaccioliChristopher ClackGiacomo Livan  Paolo Barucca Carolyn Phelan Daniel Hulme  Robert E Smith  Jiahua Xu

' ‘ ] Research o
[ . ‘ v < Bt scomputational finance *empirical flnance
‘Simone Righi Paolo Tasca Geoff Goodell Nikhil Vadgama Jessica James Nick Froozye  Ariane Chapelle Denise Gorse +data-driven modelling 'mark_et m"crOStr'UCture
—_— s UK «artificial intelligence °a!gor|thm|c trading '
E PS RC @*”a‘d‘ Education: «financial risk management  *high-frequency trading
: . i «data science
——— A PhD Doctoral Training Centre in Financial Computing b!opkchaln technology . :
Pioneering research  » - . . «digital economy *big data analytics
SRl Ll o e s 500 MSc Computational Finance T network analvsis
o MSc Financial Risk Management :systemlc I”Sk_ o of ‘machine Iear)rlming
E-S‘R-C MSc Financial Technology, forthcoming 2021-22 dr:aL:in\;I:t?\?:s pricing o «price formation
Eu,e MSc Emerging Digital Technologies, forthcoming 2021-22 -agent-based simulation »portfolio optimization
14/06/08835n T Acte LICI 2010 5




What can machines learn?

14/06/2021 T A<te LICI 2019 3



NRWNAVYDRVIGR| New York Times 1958
LBARNS BY DOIG| ot %38 s
it gains experience, he|

Paychaogit ShowsEmbryo "‘;,
of Compute Designd . ppcing 2t "Gorme
Read and Grow Wiser tcal Laboratory, Bt

o iy dmoncirtie, e

iy P

registering 3, °Q" for the
e 0¥ o e e

n i sty
) -m munun [nctions wi

o

- The perceptron

(Rosemblatt ‘57, Minsky Papert ‘69)

X
1' W
X5
o W, x
\k\’ h
—>

error function g(h)

f() activation function

It learns from examples

T A<ste LIC] 2019



forward propagation of signal

Xl‘ W

X2 Wz X
‘ 2 = f(wx+b)

—>

Wan

(") activation function



i

X Weights are cyclically
o W, »  adjusted in order to minimize
—>

1 A7
error
X2 @ WZXZ\»
: error function g(h)
' Wn Xn = |
f() activation function

backward propagation of error

h



Validation

The circular learning approach where a
model is automatically learned from
data through validation and optimization
IS hot new

14/06/2021 T A<ste LIC] 2019

[ uondIpaid




Ny=-177

@~

-3 :

 Whatis novel is the ‘bottom up’ approach that does not need human
intuition for the formulation of the model

« Parsimony is no longer central

« Avery large number of models are automatically generated and the
model selection part becomes central




What can machines learn?

Machine learning, artificial
intelligence and deep learning had
an enormous success in recent
years

Their successful application has
been mainly in the domain of
image recognition/manipulation
and games

14/06/2021 T A<ste LIC] 2019



Universal approximation
th 90 re m Cybenko 1989, Hornik 1991

A forward neural network with more than one layer
can approximate any function as far as the network
has a large enough number of neurons

o——:°
@)
Ps :
X : OEfNN(x)

Function aproximated by the

.k
/4 "
L
> Reference flj](:tion

forward neural network

*— N\, fan(@) ~f0)l < &

14/06/2021 T A<ste LIC] 2019



Recurrent neural networks

are Turing complete

By adding loops (within a layer or backwards) a
recurrent neural network is Turing complete and
therefore it can perform any computation

14/06/2021 T A<ste LIC] 2019



Can machines learn markets?

14/06/2021 T A<te LICI 2019 12



Markets

are gigantic &
computation
environments i
where machines .J’;}
and humans t
interact to calculate,
the price of things ' =

\
20 L !




Markets are complex systems

« Markets are complex systems where a large and
heterogeneous number of variables interact within an
intricated system of relations

* In markets trades are executed at speeds ranging from
nanoseconds to years, this are 107° order of magnitude
(comparable to our distance to Proxima centaury in
meters)

« Market variables have statistical properties that are non-
normal with fat-tails power law distributions

« Markets adapt and change, they are not stationary

T A<ste LIC] 2019



Can machines learn markets?

Has a machine that can trade successfully learned
something about the market?

Can we define what does it mean learn in the case of
markets?

A pragmatic perspective:
can machines learn to automate tasks so far
performed by humans?

T A<ste LIC] 2019



What can we learn from machines?

14/06/2021 T A<te LICI 2019 16



Black boxes?

Deep learning models return equations or algorithms; these
are the same kind of outputs of human-made models

They are however extremely complicated being
* high-dimensional and
* non-linear




High dimensionality

High dimensional spaces are very different from the low-
dimensional space we live in.

In particular, the subdivision of high-dimensional spaces into
regions (the basins of optimal solutions) have non-intuitive
properties

* Most of the volume of the region is near the surface

« The number of neighboring regions grows at least exponentially with
dimension

« The number of interfaces between regions grow combinatorically with
dimension

* Any ‘gradient descent optimizer’ will be always and unavoidably stuck
in some saddle-point frontier

Tomaso Aste and , Denis Weaire, The pursuit of perfect packing. CRC Press, 2008.

T. Aste, and N. Rivier. "Random cellular froths in spaces of any dimension and curvature." Journal of Physics A: Mathematical and General 28, no. 5 (1995): 1381.
T Aste, "Dynamical partitions of space in any dimension." Journal of Physics A: Mathematical and General 31, no. 43 (1998): 8577.



Linearity

Linear solutions of linear problems are neat and unique,
they have convenient properties:

1. Small changes in the input produce proportionally small

changes in the output
2. Small changes in the solution structure or parameters

also produce small changes in the output
3. Approximate solutions with similar errors are similar

Non-linear solutions are very different



Non-linearity

Non-linear solutions solutions are very different

1. Small changes in the input can produce very
large changes in the output

2. Small changes in the solution structure or

Intriguingly, the way
deep learning
systems are trained
(specifically methods
such as:

data sampling, drop
off, knockout, data
augmentations, loss
functions, weight

parameters can produce very large changes in regularization...)

the output

3. Approximate solutions with similar errors can
be completely different and there is a
combinatorial large number of them

seem to overcome
several of these
issues, at least in
some cases.

We have a lot of to
learn about how
these systems
discover approximate
solutions




What machines can learn about our complex world -
and what can we learn from them?

They learn approximate solutions that are high-dimensional
and non-linear

The structure of the solution tells us very little about the
model

However, if the learning process if done properly, these
solutions are quite robust and can work also Iin
circumstances different from the training examples

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3797711



Deep learning the limit Order Book
Experiment 1

A comparative perspective

https://arxiv.org/pdf/2007.07319.pdf

14/06/2021 T A<ste LICI 2019 22



14/06/2021

Jeremy Turiel

T A<ste LIC] 2019

Antonio Briola

23



The Limit Order Book (LOB) is a self-organizing system where a
large number of players interact with offers and bids and

eventually agree on a transaction price

Market depth

104 *t
9 - LOB levels

10 levels on the sell side
best ask About 10 transactions
| per second for liquid
Price assets on NASDAQ

mid-price

Volume available
)
1

-3 4 Buy limit order
1 10 levels on the buy side

7
-7 - . .
_g ] bid-ask spread ask side

-10 - Sell limit order L+ ¢
LOB levels

14/06/2021 T A<ste LICI 2019 24



The machine learning system

14/06/2021

Machine
INPUT learning
LOB prices and system
volumes for 10 (7 models)

previous ticks
400-dimesions

Training with 18 million examples

T A<ste LIC] 2019

Testing with 6 million
datapoints

ouUTPUT
Transaction
price range at
a given
horizon
3-dimensions

25



b b b
[(pv U)(C)Lv (pv U)O? (pv rU)Clbv (pv U)l? et (pv v)(iloa (pa U)lo]
20 levels of LOB 10 previous ticks (x,g,...X;)
X; = 40-dimensions Overall a vector of 400-dimesions
Data:
NASDAQ, Intel Corp. (INTC) LOB data
Period.

training 3 months:
04-02-2019 to 31-05-2019 -> ~ 18 million transactions

testing 1 month:
03-06-2019 to 28-06-2019 -> ~ 6 million transactions

14/06/2021 T A<ste LICI 2019 26



Probability of transaction after 10, 50 or 100 ticks at a price
within a given quantile range established from the training set

0 25 75 1
| | | |
| | | |
\ J\ J\ J

Y Y |
q-1 9o q+1
Training Set Balancing Test Set Balancing
5% 107 9 x 10°

7 % 10°
5% 10°

II I I II I I Horizons
10, 50, 100 ticks

Horizon 50  Horizon 100

# Samples

# Samples

Horizon 10 Horizon 50  Horizon 100 Horizon 10

W B oo Wi W 0 90 W 94

27

14/06/2021 T A<ste LICI 2019



input: | [(?, 10, 40)]
InputLayer
output: | [(?, 10, 40)]
input: ?, 10, 40
Reshape P £ A
output: | (?, 10,40, 1)
input: ?,10,40, 1
Conv2D P ¢ 2
output: | (?, 10, 20, 16)
input: | (?, 10, 20, 16)
LeakyReLU
output: | (?, 10, 20, 16)
input: ?,10, 20, 16
Conv2D P ¢ )
output: | (?, 10, 20, 16)
input: ?, 10, 20, 16,
Conv2D P ¢ :
output: | (2, 10, 20, 16)
input: ?, 10, 20, 16
Conv2D P g L
output: | (?, 10, 10, 16)
input: | (2, 10, 10, 16)
LeakyReLU
output: | (?, 10, 10, 16)
input: ?,10, 10, 16
Conv2D P ! :
output: | (?, 10, 10, 16)
input: 2,10, 10, 16
Conv2D P ¢ )
output: | (?, 10, 10, 16)

14/06/2021

l

input: (7,10, 10, 16)
Conv2D
output: | (2,10, 1, 16) Q I t 6 O
input: 2,10, 1, 16
LeakyReLU P ¢ )
‘T  thousands
input: 2,10, 1, 16
Conv2D L ¢ )
e pa rameters
input: 2,10, 1, 16
Conv2D 1y ¢ )
output: | (2,10, 1, 16)
input: 2,10, 1, 16 input: 2,10, 1, 16 input: ?,10,1, 16
Conv2D ey ¢ ) Conv2D 1Py ¢ ) MaxPooling2D 1y ¢ )
output: | (?, 10,1, 32) output: | (2,10, 1, 32) output: | (?,10,1,16)
input: ?,10,1, 32 input: 2,10, 1,32 input: ?2,10,1, 16
LeakyReLU Ld ( ) LeakyReLU P ¢ ) Conv2D P ¢ )
output: | (?,10,1,32) output: | (?,10,1,32) output: | (2,10, 1,32)
input: 2,10, 1,32 input: 2,10, 1,32
Conv2D 1y ¢ ) Conv2D 1Py ¢ )
output: | (2,10, 1,32) output: | (2,10, 1,32)
input: | (7,10, 1,32) input: (?,10,1,32) input: | (2,10, 1,32)
LeakyReLU LeakyReLU LeakyReLU
output: | (?,10,1,32) output: | (?,10,1,32) output: | (?,10,1,32)

\

}

/

[Cinput: [ 12, 10,1,32), (%, 10, 1,32), (2, 10, 1,32)] |

C
[ output: | (2,10, 1,96) |
—
Reshape input: | (2,10, 1, 96)

output: (7,10, 96)

Z.Zhang, S. Zohren, and S. Roberts. input: | (%, 10, 96)
. LS

“DeepLOB: Deep Convolutional output: | (2, 64)

Neural Networks for Limit Order
Books”. In: IEEE Transactions on
Signal Processing 67.11 (June 2019),
pp. 3001-3012

P
T A<ste LICI 2019

Layer (type)

Output Shape

i

Param #

Connected to

input_1 (InputLayer)

[(None, 10,40)] 0

reshape (Reshape)

(None, 10,40, 1) 0

input_1[0]{0]

conv2d (Conv2D)

(None, 10, 20, 16) 48

reshape[0][0]

leaky_re_lu (LeakyReLU)

(None, 10, 20, 16) 0

conv2d[0][0]

conv2d_1 (Conv2D)

(None, 10, 20, 16) 1040

leaky_re_lu[0][0]

Conv2d_2 (Conv2D)

(None, 10, 20, 16) 1040

Conv2d_1[0]i0]

conv2d_3 (Conv2D)

(None, 10, 10, 16) 528

conv2d_2[0]{0]

leaky_re_lu_1 (LeakyReLU)

(None, 10, 10, 16) 0

conv2d_3[0][0]

conv2d_4 (Conv2D)

(None, 10, 10, 16) 1040

leaky_re_lu_1[0][0]

conv2d_5 (Conv2D)

(None, 10, 10, 16) 1040

conv2d_4{0][0]

Conv2d_6 (Conv2D)

(None, 10, 1, 16) 2576

Conv2d_5[0]0]

leaky_re_lu_2 (LeakyReLU)

(None, 10, 1,16) 0

conv2d_6[0][0]

conv2d_7 (Conv2D)

(None, 10, 1, 16) 1040

leaky_re_lu_2[0][0]

conv2d_8 (Conv2D)

(None, 10, 1, 16) 1040

conv2d_7[0][0]

conv2d_9 (Conv2D)

(None, 10, 1,32) 544

conv2d_8[0][0]

Conv2d_11 (Conv2D)

(None, 10, 1, 32) 544

Conv2d_8[oji0]

leaky_re_lu_3 (LeakyReLU)

(None, 10, 1,32) 0

conv2d_9[0][0]

leaky_re_lu_5 (LeakyReLU)

(None, 10, 1,32) 0

conv2d_11[0][0]

max_pooling2d (MaxPooling2D) (None, 10,1, 16) 0

conv2d_8[0][0]

conv2d_10 (Conv2D)

(None, 10, 1,32) 3104

leaky_re_lu_3(0][0]

Conv2d_12 (ConvzD)

(None, 10, 1, 32) 5152

Teaky_re_Iu_5[0][0]

conv2d_13 (Conv2D)

(None, 10, 1,32) 544

max_pooling2d[0][0]

leaky_re_lu_4 (LeakyReLU)

(None, 10, 1,32) 0

conv2d_10[0][0]

leaky_re_lu_6 (LeakyReLU)

(None, 10, 1,32) 0

conv2d_12[0][0]

leaky_re_lu_7 (LeakyReLU)

(None, 10, 1,32) 0

conv2d_13[0][0]

Concatenate (Concatenate)

None, 10, 1, 96) 0

Teaky_re_Iu_4[0][0]

leaky_re_lu_6[0][0]
leaky_re_lu_7[0][0]

reshape_1 (Reshape)

(None, 10,96) 0

concatenate[0][0]

Istm (LSTM)

(None, 64) 41216

reshape_1[0][0]

dense (Dense)

(None, 3) 195

Istm{0][0]

Total params: 60,691
Trainable params: 60,691
Non-trainable params: 0

=) Quantile probability

28



Models

Can a Multilayer Perceptron learn the LOB efficiently?
And how will it do with respect to other simpler and more
complicated models?

We investigate and compare 7 different models with increasing
levels of complexity

Random Model — uniform probability outcome prediction
Naive Model — output most represented in training
Logistic Regression — simple perceptron

Multilayer Perceptron — deep learning model

Shallow LSTM - deep learning with memory
Self-Attention LSTM - deep learning with memory & loop
CNN-LSTM - state of the art deep learning

14/06/2021 T A<ste LIC] 2019

NOoOOARGON=

29



i

oo o T ] @ LOB © o© Over 2 million
parameters

Flatten

input: | (2, 10, 40) ‘ .
(@

output: (?, 400)

input: ?, 400
Dense P ( ) X
output: [ (?, 400)

input: | (?,400)
output: | (?,512)

Dense

‘\. | | ‘/7‘

input: (?,512)
Dense
output: | (?, 1024)
input: | (?, 1024)
Dense > Toon
output: (7, 1024) Layer (type) Output Shape Param #
input_1 (InputLayer)  [(None, 10,40)] 0
flatten (Flatten) (None, 400) 0
input: (2, 1024) dense (Dense) (None, 400) 160400
Dense 7 64 dense_1 (Dense) (None, 512) 205312
output: I
tp @. 64 dense_2 (Dense) (None, 1024) 525312
Gense_3 (Dense) (None, 1024) 1049600
dense_4 (Dense) (None, 64) 65600

L] L] L]
w o] wap Quantile probabilit
Dense Total params: 2,006,419. Trainable params: 2,006,419, Non-trainable params: 0

output: 7,3
14) put: | 3 T Acte LICI 2010 30




. O— P

o 1+ eZi Bix;

x, O ~400 parameters

One-layer perceptron (x,=17)

14/06/2021 T A<ste LICI 2019 31



i

[(?,10,40)] | <= | OB

About 5
thousands

parameters

ﬁ

—}q
—

input:
InputLayer
output: | [(?, 10, 40)]
1nput: 7,10, 40
LSTM P ( s
output: (7, 20)
input: | (?, 20)
Dense
output: | (?,3)

14/06/2021

.\.

400 20 3

eeeeeeeeee

((((((

Output Shape
input_1 (InputLay
- LY B istm (LSTM) 3
mmp Quantile probabllity ===
Total params: 4,943
Trainable params: 4,943
Non-trainable params: 0

T A<ste LICI 2019 32



/

input: ?,10, 40
InputLayer P L )
output: | [(?, 10, 40)]
input: ?, 10, 40
LSTM i { )

output: | (?, 10, 40)

input: | (2, 10, 40) input: | (2, 10, 40)
Lambda Dense
output: (?,40) output: | (?, 10, 40)
input: | [(?, 10, 40), (2, 40)]
Dot
output: (2, 10)
input: ?, 10
Activation s ¢ )
output: | (?, 10)
input: | [(?, 10, 40), (?, 10)]
Dot
output: (2, 40)
input: | [(?,40), (2, 40)]
Concatenate
output: (?, 80)
A
input: (?, 80)
Dense
output: | (?, 128)
input: | (?, 128)
Dense
output: | (?,3)
14/06/2021

=) Quantile probability

@@= | OB

T A<ste LICI 2019

About 25
thousands
parameters

Layer (type) Output Shape  Param# Connected to
input_1 (InputLayer) [(None, 10,40)] 0
Istm (LSTM) (None, 10,40) 12960  input_1[0][0]

aftention_score_vec (Dense) _ (None, 10, 40) 1600 IStm[0J[0]

last_hidden_state (Lambda)  (None, 40) 0 Istm[0][0]

attention_score (Dot) (None, 10) attention_score_vec{0][0]

[
last_hidden_state[0][0]

attention_weight (Activation) (None, 10) 0 attention_score[0][0]

context_vector (Dot) (None, 40) 0 Istm[0][0]
attention_weight[0][0]

attention_output (Concatenate) (None, 80) 0 context_vector[0][0]
last_hidden_state[0][0]

aftention_vector (Dense) _ (None, 128) 70240 aftention_outputfoJ[0]

dense (Dense) (None, 3) 387 attention_vector[0][0]

Total params: 25,187
Trainable params: 25,187
Non-trainable params: 0

33



The models range a parameter space dimension from zero
to one million

Model Input Number of Number of Learning Training
layers (*) parameters(**) rate epochs

Random - 0 0 — -
Naive LOB 1 1 — -
Logistic Reg. LOB 2 4 % 102 1073 30
MLP LOB 7 2.0 x 108 10~3 30
Shallow LSTM LOB 3 4.9 x 103 10~3 30
Self-Attention LSTM  LOB 4 2.5 x 104 10~3 30
CNN-LSTM LOB 28 6.0 x 10% 10~3 30

Table 1: Summary of the inputs and hyperparameters used in the models in this
article. ) The number of layers includes the input and the output layer. **)The
number of parameters is approximated to the nearest order of magnitude and
truncated for readability.

14/06/2021 T A<ste LICI 2019 34



Performance metrics

We tested performances of the prediction for each
of the quantile regions by computing:
Precision, Recall and F-measure

In order to correct for class imbalance we also tested:
balanced Accuracy, weighted Precision, weighted
Recall and weighted F-score

Furthermore, two multi-class correlation metrics between
forecasted and real labels computed:
Matthews Correlation Coefficient (MCC) and Cohen’s Kappa

14/06/2021 T A<ste LIC] 2019 35



S Results I e

Performances at three horizons: 10, 50, 100 ticks

Random Model Naive Model Logistic Regression Shallow LSTM Self-Attention LSTM| CNN-LSTM Multilayer Perceptron
H10 H50 H100 HI10 H50 HI100 H10 H50 H100 H10 H50 H100 H10 H50 H100{ H10 H50 H100, H10 H50 H100
Balanced Accuracy 033 033 033 033 033 033 046 047 053 047 051 038 055 042 052 057 056 055] 056 0.59 0.61
Weighted Precision 041 041 041 016 030 030 054 056 062 058 057 065 061 050 047 062 061 061} 062 0.62 0.63
Weighted Recall 033 033 033 040 055 054 059 059 061 058 058 057 061 045 034 062 062 062} 062 0.63 0.63
Weighted F-Measure 034 035 035 023 040 039 053 053 060 051 057 047 060 040 024 062 061 061} 061 0.62 0.63

Precision quantile [0, 0.25] 026 026 026 0 0 0 057 057 057 057 056 058 060 037 055] 059 059 059 059 0.59 0.59
Precision quantile [0.25,0.75] 0.55 055 055 040 055 054 059 060 063 059 062 056 062 055 052] 065 0.64 063 0.64 0.66 0.67
Precision quantile [0.75, 1] 020 020 020 O 0 0 031 038 058 057 043 097 057 052 026) 057 057 057 059 0.58 0.57

Recall quantile [0, 0.25] 033 033 033 0 0 0 055 059 059 006 062 022 035 081 062 054 055 053] 060 0.59 0.60
Recall quantile [0.25, 0.75] 033 033 033 1 1 1 082 081 076 085 069 093 076 044 001 071 072 074 0.74 0.70 0.68
Recall quantile [0.75, 1] 033 033 033 0 0 0 0 0 023 051 023 0 0.53 0004 092 046 042 039 034 046 0.54
F-Measure quantile [0, 0.25] 029 029 0.29 0 0 0 056 057 058 011 059 031 044 0503 058) 057 057 056 059 0.59 0.59
F-Measure quantile [0.25,0.75] 042 042 042 057 071 070 0.70 0.70 0.68 0.69 0.65 070 068 048 0.02] 0.68 0.68 0.68] 0.69 0.68 0.67
F-Measure quantile [0.75,1] 025 025 0.25 0 0 0 0 0 033 054 030 0 0.55 0.009 040 051 048 046] 043 051 0.56
MCC 0 0 0 0 0 0 024 025 030 023 027 0.14 031 0120 025 034 034 032) 034 0.36 0.38

Cohen’s Kappa 0 0 0 0 0 0 021 022 030 020 027 010 030 0105 0.16] 034 033 032 033 036 0.38

Best

14/06/2021 T A<ste LICI 2019 36



Balanced Accuracy Balanced Accuracy
70% 70%
Horizon 10 60% " Random Model B Logistic Regression co% Horizon 100
ok I Naive Model [ Shallow LSTM
I self-Attention LSTM [ MLP

[ CNN-LSTM

Horizon 50

Balanced Accuracy
70%

MCC W. F-Measure
a)

W. F-Measure

c)

MCC b) W. F-Measure

14/06/2021 T A<te LICI 2019 37



Bayesian correlated t-test from MCC measure e  Multil ayer perce ptron is
B HA-,—|AT =10 HAT|AT =50 HAT|AT =100 _ .
Multilaver Percentron Multilayer Perceptron Multilaver Perceptron th e b e St p e rfo rmin g
CNN - LSTM CNN - LSTM CNN - LSTM o CN N-LSTM |S Second-
. Shallow LSTM o - .
Self-Attention LSTM Multinomial Logistic Regression Multinomial Logistic Regression beS t W | th com pa ra b | e
Shallow LSTM . .
Multinomial Logistic Regression Self-Attention LSTM Self-Attention LSTM p e r.fo rmances
Naive Model Naive Model g .
Random Model Random Model Shallow LSTM ® L 0] g | Stl cre g ression h as
Random Model good performances
Bayesian correlated t-test from F measure compara ble with LSTM
HAT|A7‘ =10 HAT|AT =50 HAT|AT =100 H
. —— and self-attention LSTM
CNN - LSTM CNN - LSTM Multilayes Perceptron * Naive and Random are
Self-Attention LSTM
Shallow LSTM CNN - LSTM worst
Multinomial Logistic Regression Shallow LSTM Multinomial Logistic Regression
Naive Model Multinomial Logistic Regression Shallow LSTM
Random Model Self-Attention LSTM Self-Attention LSTM
Naive Model Naive Model
Random Model Random Model

14/06/2021 T A<ste LICI 2019 38



i

One can attempt to
cluster the models
together based on their
performances

Random Model

Naive

One can note that
memory/recurrent loops
(LSTM) play little role in
performances. Most of
the information is
processed forwards from
the LOB input

T A<te LICI 2019



Deep learning the limit Order Book
Experiment 2

Reinforcement Learning

https://arxiv.org/abs/2101.07107

14/06/2021 T A<ste LICI 2019 40



Reward

INPUT
LOB prices and einforcement
volumes for 10 learning
previous ticks
400-dimesions

algorithm

Training with ~6 millions
selected examples

14/06/2021

Testing with 6 million
examples

OUTPUT
Action:

Sell,
stay,
buy,
stop loss



i

S

Profits of the ‘agent’ depending on the action

The algorithm buys Q-learning IR IEEETTS
approach neutral
or sells or holds

Long
one unit of Intel short
Corporation stock Gaussian process regressor
(INTC) on ’
NASDAQ during Sell
the month of June SBtSyy
2019 stop_loss

It is trained during
the previous 3
months About 30,000 parameters

14/06/2021 T A<ste LIC] 2019 42




i

S d

Profits of the ‘agent’ depending on the action

. Q| sell | stay | buy | Stop_loss |
We train on 25 selected neutral
significant events containing L:”ft
about 250,000 ticks

Gaussian process regressor

« Training on 60 days

Sell

04/02/2019-30/04/2019 St:,y

« Validation on 22 days Buy
01/05/2019-31/05/2019 stop_loss

« Testing on 20 days
03/06/2019-28/06/2019

About 30,000 parameters

14/06/2021 T A<ste LICI 2019 43



i

We teSt for three SetS Of Profits of the ‘agedepnding on the action
input information; all neutral
have the full LOB (400 Long

short

dimension) plus:

1. State of the agent *

2. State of the agent & ® 5
market price minus price X
paid for the unit (mark to : :
market profit) ‘

State of the agent & price
paid for the unit (mark to ~ 4002*3
market) & bid-ask spread About 30,000 parameters

Gaussian process regressor

Sell
stay
Buy
stop_loss

14/06/2021 T A<ste LIC] 2019



1. LOB + 2. LOB + 3. LOB +

State of the agent | State of the agent & State of the agent & price paid
price paid for the unit | for the unit (mark to market) &

(mark to market) bid-ask spread

) x10% x10° x10%
~a N —
z _ SO DL
pa— - p—
3 = 3,
0. a X4
2 2, 2
= 3 =
= = &2
£ 0.0 E 2 =
E = :
L o S0
0 Tick 2 LOB 4d N 1606 0 1 2 3 4 5 fr)“ 0 1 2 3 4 5 .
ick time ( updates) Tick time (LOB updates) % Tick time (LOB updates)  *10

102

=

=

=

wv
L
el
«
©
10 vl
5
It
L
el
£
=]
=

Number of trades
Number of trades

=

100 1 LI |l| 1 || 1

—3000—2000—1000 0 1000 2000 3000 4000 500 0 g i o
Trade Profit ($ - .
®) Trade Profit ($)

100

—4000 —2000 0 2000 4000 6000 8000

Trade Profit ($)

14/06/2021 T A<ste LICI 2019



Deep reinforcement learning: performances

What the agent learned?

14/06/2021

The agent increases profits by about 100 folds by
trading 10 to 100 times more often using information
about the reference unit price (mark to market). The
agent learns to increase profits while increasing trading
frequency despite the bid-ask spread cost

Risk is reduced considerably

The extra information on the bid-ask spread does not
increase performances

T A<ste LIC] 2019



Conclusions

+ Artificial intelligence is providing increasingly powerful

14/06/2021

new instruments

It is almost a surprise that a complicated self-trained
machine, such as the Multi Layer Perception, can learn
something about the price formation mechanism on the
LOB

It is almost a surprise that a self-learning agent can
discover trading strategies

Results are very good but not ground-breaking. Are we
at the beginning or at the end of this journey?

T A<ste LIC] 2019



Links and
references

LINKS

FCA Group Page:
http://fincomp.cs.ucl.ac.uk/introd RELEVANT PAPERS

uction/

Aste, Tomaso. "What machines can learn about our complex world-and what can we learn
My articles: from them?." Available at SSRN 3797711 (2021).
https://scholar.google.co.uk/citati Briola, Antonio, Jeremy Turiel, Riccardo Marcaccioli, and Tomaso Aste. "Deep
ons?user=27pUbTUAAAAJ&hI=e Reinforcement Learning for Active High Frequency Trading." arXiv preprint
n arXiv:2101.07107 (2021).
Software: Briola, Antonio, Jeremy Turiel, and Tomaso Aste. "Deep Learning Modeling of the Limit

TMFG & Clique Forests Order Book: A Comparative Perspective." Available at SSRN 3714230 (2020).

https://github.com/cvborkulo/Net
workComparisonTest/pull/5
https://uk.mathworks.com/matlab
central/fileexchange/56444-tmfg

14/06/2021 T A<ste LICI 2019 48


http://fincomp.cs.ucl.ac.uk/introduction/
https://scholar.google.co.uk/citations?user=27pUbTUAAAAJ&hl=en
https://github.com/cvborkulo/NetworkComparisonTest/pull/5
https://uk.mathworks.com/matlabcentral/fileexchange/56444-tmfg

