
Pricing Swing Options

by Reinforcement Learning1

Roberto Daluiso (Intesa Sanpaolo)

joint work with:

Emanuele Nastasi (Marketz S.p.A.)
Andrea Pallavicini (Intesa Sanpaolo)

Giulio Sartorelli (Intesa Sanpaolo)

Big Data and Machine Learning in Finance Conference
Politecnico di Milano, June 10, 2021

1Daluiso et al. 2020 (https://arxiv.org/abs/2001.08906)



Contents

1 Introduction

2 Least-square Monte Carlo solution

3 Reinforcement learning solution

4 Conclusion



Contents

1 Introduction

2 Least-square Monte Carlo solution

3 Reinforcement learning solution

4 Conclusion



Motivation

Several pricing problems fit in the framework of stochastic control:

Option contracts depend on decisions by the holder

So their fair price is a supremum across all admissible choices

Challenges for traditional approaches
1 Complex dependence of the payoff on multiple decisions

2 High dimensional state space (e.g. basket options)

Reinforcement Learning (RL) may help:
1 Model-agnostic: learns the impact of actions by trial and error

2 Scalable: leverages machine learning to learn value functions



Swing Options

A swing option guarantees a flexible supply of a commodity

The underlying is the day-ahead future FTi
:� FTi

pTi�1, 1dq
for each fixing date T1, . . . ,Tnf in the delivery period

At each fixing date the holder chooses a quantity NTi

and gets it at the strike price K . His choice is constrained by:

Local constraints: NTi
P rNm,NMs

Global constraint:
nf̧

i�1

NTi
P rCm,CMs



Benchmarks

We purposely choose a well-studied problem, so that we can check
the output of RL both quantitatively and qualitatively:

Numerical benchmark
We implement a Least-Square Monte Carlo algorithm (LSMC),
similarly to Barrera-Esteve et al. 2006

Many alternative proposals exist in the literature

Theorem (Bardou et al. 2010)

If the lower bound Cm and width CM � Cm of the global constraint
are integer multiples of the width NM � Nm of the local constraint,
then there exists an optimal control of bang-bang type, i.e. such that
at each fixing date one chooses either the minimum or the maximum
admissible consumption given local and global constraints.



Contents

1 Introduction

2 Least-square Monte Carlo solution

3 Reinforcement learning solution

4 Conclusion



Dynamic Programming Principle
Suppose zero interest rates for simplicity, and define

CTi
:�

i̧

j�1

NTj
total consumption up to time Ti .

Then the value WTi
of the option satisfies the backwards recursion

WTi
pFTi

,CTi�1
q � max

NTi

 
NTi

pFTi
� K q � ETi

�
WTi�1

pFTi�1
,CTi

q
�(

Implicit assumptions
1 The day-ahead future Ft is Markov (because of the model)

2 WTi
depends on past decisions only via CTi�1

(because of the type of constraints)

Hence the LSMC approach needs a redesign each time the model
and/or contract details change.



Discretization
The backward recursion is implicit, because at step Ti the optimal
CTi

is yet unknown:

WTi
pFTi

,CTi�1
q � max

NTi

 
NTi

pFTi
� K q � ETi

�
WTi�1

pFTi�1
,CTi

q
�(

A way out is to discretize the set of attainable total consumptions:

Discretized recursion

At step Ti and for each consumption C i�1
` of a grid C i�1:

1 Define the set QTi pC i�1
` q � tNTi

P rNm,NMs : NTi
� C i

j � C i�1
` u

2 Approximate WTi

�
FTi

,C i�1
`

�
by a max on this finite set:

max
NPQTi pC i�1

` q

 
N pFTi

� K q � ETi

�
WTi�1

�
FTi�1

,C i�1
` � N

� �(
3 Use regression to estimate the expected values.



Consumption Grid

Total consumption grid for a swing delivering in the month of April 2019

with NM � 1, Nm � 0, CM � 15.7, Cm � 5.2.



Contents

1 Introduction

2 Least-square Monte Carlo solution

3 Reinforcement learning solution

4 Conclusion



(Model-Free) Reinforcement Learning

Agent

tNθ
Ti
,V θ

Ti
u

State

tTi ,FTi
,C θTi�1

u

State

tTi�1,FTi�1
,C θTi

u

Reward

Nθ
Ti
pFTi

� K q

Reward

Nθ
Ti�1

pFTi�1
� K q

read
environment

get
reward

update
consumption

simulate

cumulate

A RL agent updates his policy while it interacts with the environment,

so that the new Nθ improves his estimate V θ of expected rewards.



RL Families

RL algorithms may be classified by the function which is learned
(our choice in red):

Learned object

Value Iteration: learn the expected cumulated reward V pxq
on the optimal policy as a function of the current state x

Q-Learning: learn the expected cumulated reward Qpx , aq
of using an action a from state x and then acting optimally

Policy Optimization: learn an action πpxq maximizing
an estimate of the policy’s cumulated future rewards



Proximal Policy Optimization
We use the Proximal Policy Optimization (PPO) algorithm
proposed in Schulman et al. 20172:

Well-suited for continuous control problems

Actor-critic algorithm: both the policy πθ

and an estimate V θ of its value function are maintained

Key points of PPO
1 Policies are randomized, hence represented by a pdf πθpa|xq:

� If A is discrete, a network outputs the probability of each action
� Otherwise, a network outputs the mean Nθ

Ti
of a Gaussian

2 The algorithm updates θ by batch stochastic gradient descent

3 The objective function is clipped to discourage large steps,
as in trust-region optimization

2We use the implementation of the algorithm found in OpenAI Baselines
https://github.com/openai/baselines

https://github.com/openai/baselines


Setting of Numerical Examples

Strike fixed at-the-money at inception

Model in Daluiso et al. 2020 with mean reversion equal to 1

Prices computed by MC on an out-of-sample set of 106 paths

Network inputs
Reasonably-normalized inputs help training considerably:

1 Ti is expressed as a year fraction

2 The total consumption to-date is remapped linearly at each time
so that its domain is always r�0.5, 0.5s

3 The underlying future is remapped as logpFTi
{FT0q



Optimized Policy

Main experiment
1 Delivery period: one month

2 Constraints in MWh: rNm,NMs � r0, 1s, rCm,CMs � r12, 20s,
satisfying the hypotheses for existence of bang-bang optima

3 Fixed 5x4 architecture, tuned on a shorter-lived option

Normalized consumption as a
function of normalized log-spot
and consumption, on the fourth
decision date. Although a priori
the action was continuous-valued,
a posteriori the PPO algorithm
detected an optimal policy which
is of bang-bang type.



Comparison to LSMC

Variants to the main experiment
1 Cm: 12 or 12.5 (to have non bang-bang optima)

2 Policies: continuous-valued or constrained to be bang-bang

PPO All Strategies Only Bang-Bang
Out of Theorem Hyp. 7.92 � 0.04 7.74 � 0.04
Within Theorem Hyp. 8.40 � 0.04 8.37 � 0.04

LSMC All Strategies Only Bang-Bang
Out of Theorem Hyp. 7.97 � 0.04 7.76 � 0.04
Within Theorem Hyp. 8.46 � 0.04 8.46 � 0.04



Contents

1 Introduction

2 Least-square Monte Carlo solution

3 Reinforcement learning solution

4 Conclusion



Summary and further developments
We priced swing options both by least-square Monte Carlo approach
and by a recent RL algorithm (Proximal Policy Optimization).

Main findings
1 When bang-bang strategies are theoretically optimal, both

algorithms can detect it; otherwise, a slight improvement is
obtained if the bang-bang constraint on consumption is removed

2 RL can recover the prices obtained by LSMC, despite the fact
that the latter was tailored to the swing option pricing task

Possible developments
Try RL in higher dimensional settings where traditional methods fail:

1 Swing options in more realistic models with jumps
and/or multi-factor curve dynamics (Nastasi et al. 2018)

2 Pricing problems involving baskets/portfolios



Selected references
Bardou, O., S. Bouthemy, and G. Pagès (2010). “When are swing options

bang-bang?” In: International Journal of Theoretical and Applied
Finance 13.6, pp. 867–899.

Barrera-Esteve, C. et al. (2006). “Numerical methods for the pricing of
Swing options: a stochastic control approach”. In: Methodology and
Computing in Applied Probability 8.4, pp. 517–540.

Daluiso, R. et al. (2020). “Pricing Commodity Swing Options”. In:
Working paper. url: https://arxiv.org/abs/2001.08906.

Nastasi, E., A. Pallavicini, and G. Sartorelli (2018). “Smile Modelling in
Commodity Markets”. In: Working paper. url:
https://arxiv.org/abs/1808.09685.

Schulman, J. et al. (2017). “Proximal Policy Optimization Algorithms”.
In: Working paper. url: https://arxiv.org/abs/1707.06347.

The opinions expressed in this work are solely those of the authors and do
not represent in any way those of their current and past employers.

https://arxiv.org/abs/2001.08906
https://arxiv.org/abs/1808.09685
https://arxiv.org/abs/1707.06347


Backup Slides



Example Contract

Fixing Period

Strike Period

NTi pFTi pTi�1, 1dq � Ktns q

01
Ju

l2
01

8

Today

29
M

ar
20

18

31
Ju

l2
01

8

01
Ju

n
20

18

28
Ju

n
20

18
Ktns �

1
ns

°ns
j�1 Ftj pJUL18, 1mq

Term-sheet data for a swing option with delivery in July 2018 in TTF

natural gas market. The strike is fixed by averaging the JUL18 futures

contract observed in the month of June.



Dynamic Programming by Regression
Now given a set of MC paths F pkq we approximate the expectation

E
�
WTi�1

�
FTi�1

,C i�1
` � N

� �� FTi
� F

pkq
Ti

�
� fTi

�
F
pkq
Ti

;C i�1
` � N

	

supposing that it is quadratic in F
pkq
Ti

:

fTi
pF ;C q :� αi pC q � β i pC qF � γ i pC qF 2

Remark

C i�1
` � N P C i by construction, hence we can estimate all needed

coefficients by regressing for each j the realizations

y pkq :� WTi�1

�
F
pkq
Ti�1

,C i
j

	
against x pkq :� F

pkq
Ti
.

The algorithm is initialized setting WTf
to the contractual payoff.



Results

M
A
Y
1
8

J
U
N
1
8

J
U
L
1
8

A
U
G
1
8

S
E
P
1
8

O
C
T
1
8

N
O
V
1
8

D
E
C
1
8

J
A
N
1
9

5

10

15

20

S
w

in
g

P
ri

ce
s

M
A
Y
1
8

J
U
N
1
8

J
U
L
1
8

A
U
G
1
8

S
E
P
1
8

O
C
T
1
8

N
O
V
1
8

D
E
C
1
8

J
A
N
1
9

5

10

15

20

S
w

in
g

P
ri

ce
s

Swing option prices by varying the delivery starting date. We use the

model proposed in Daluiso et al. 2020, with mean reversion parameter

ranging from top to bottom from 1.5 to 0 with a step of 0.5. Left panel

fixed-strike contracts. Right panel floating-strike contracts.



PPO Focus: Advantage

Notation

Ñθ
Ti

randomized action, πθ-distributed given the status at Ti

rTi
pÑθ

Ti
q � Ñθ

Ti
pFTi

� K q reward at time Ti

Ṽ θ
Ti

� ETi
rrTi

pÑθ
Ti
q � Ṽ θ

Ti�1
s value function of πθ

Q̃θ
Ti
pnq � ETi

rrTi
pnq � Q̃θ

Ti�1
pÑθ

Ti�1
qs action-value function of πθ

1 In gradient-based policy optimization, one must calculate

∇θE
� nf̧

i�1

rTi
pÑθ

Ti
q

�
Fact
�

¸
i

E
�
AθTi

p∇θ log πθTi
pnqq|n�ÑθTi

�

where AθTi
:� Q̃θ

Ti
pÑθ

Ti
q � Ṽ θ

Ti
is called advantage

2 Since Q̃θ
Ti

is unknown, AθTi
is then replaced by an estimator Âθi

3 See paper for details



PPO Focus: Gradient Step

θk�1 � θk � ρ � E

�
∇θ

nf̧

i�1

�
LATi

pθq � βLVTi
pθq

�∣∣∣∣∣
θ�θk

�

LATi
pθq :� min

#
πθTi

pÑθk
Ti
q

πθkTi
pÑθk

Ti
q
Âθki , clip

�
1 � ε,

πθTi
pÑθk

Ti
q

πθkTi
pÑθk

Ti
q
, 1 � ε

�
Âθki

+

LVTi
pθq :�

�
V θ
Ti
� pÂθki � V θk

Ti
q
	2

Intuition
E is estimated by a sample average on a batch

ρ is the learning rate

∇θL
Apθq is a clipping of the gradient derived in the previous slide

LV pθq is smaller if V θ represents better the expected rewards

β is an hyper-parameter to balance the two effects



Neural Network Architecture Tuning

Preliminary experiment
1 Short delivery period (one week)

2 Constraints in MWh: rNm,NMs � r0, 1s, rCm,CMs � r3, 5s

3 Try wide and/or deep architectures

Learning curves. The solid lines
are the moving average of the
realized rewards on the last 106

episodes. The shadows represent
the 98% confidence intervals.


	Introduction
	Least-square Monte Carlo solution
	Reinforcement learning solution
	Conclusion
	Selected References
	References

