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Introduction

1 Pricing in mathematical finance is building a complex function

from a model following some constraint.

2 Models are just a rough description of markets, we need to

’calibrate’

3 The complexity of the calibration procedure depends on the

complexity of the underlying model deemed capable to describe

the market situation.

4 The calibrated model is the bridge between market data and

prices (for prices that are not readily available as market data)

5 Models are a safeguard against producing ”non arbitrage” prices
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Introduction

Disclaimer

1 No magic application to improve on pricing models, just a more

convenient way to work with models

2 We deem successful the approach if we can reproduce the ability

of the model to price a given market.
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NN approach to pricing

Let’s call Π(α,G(g)) the function pricing a position G with a model

described collectively by the parameters α, and the position described

by the parameters g.

example

For a vanilla option, g would be the pair maturity and strike.

A standard ML exercise would call for:

generate, according to some random rule, a set of parameters

αn, gn 1 ≤ n ≤ N.

for each (αn gn) compute the function pricing the position G, with

the model described the parameter set αn:

Πn := Π(αn,G(gn)).
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NN approach to pricing

Iterating the procedure described above, we can build a large matrix

as:

Regressors Target

Model Parameters Contract Parameters

α1 g1 Π1

α2 g2 Π2

. . .

αN gN ΠN

Table: Sample DB for NN training

and use it to train a neural network that, if all goes well, will learn the

map

φNN : α,g → Π(α,G).

Once trained, the network will perform as an efficient black box

capable to price the position G.
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NN approach to pricing

In order to use the trained network as a pricing engine, we must

provide the correct set of parameters α, according to the following

procedure:

1 look at market data and select a suitable set of liquid assets,

2 calibrate the model in order to select the best possible set of

model parameters α,

3 feed the parameter set α to φNN in order to price the position G.
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The Market Based NN approach

This strategy pays the very high cost of the calibration phase,

unless we deal with simple models where model parameters can

be read off directly from market data.

For more complex models the above strategy is untenable and

something must be done to circumvent the calibration phase.

Since market data determine model parameters, the NN should

be capable to learn the correct model starting from market data.
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The Market Map

The calibration procedure can be described as the search for a map φ

such that

φ : market data m(g) → model parameters α.

Once established (accepted) that the map φ exists, we do not really

need to discover it, given that we can absorb it into the performance of

the network.

If we knew such a map we could build the ’Market Map’ M as

M = Π ◦ φ : (g, m(g) ) = Π : (g,α) → prices.

Rather that training the NN to learn the pricing map Π, we do train it to

learn the map M.
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The Market Based NN approach: Training

1 generate a large set of parameters αn, and market positions

gn, 1 ≤ n ≤ N

2 for each parameter compute the price of the position

Πn = Π(αn,G(gn))

3 for each parameter compute a set of market observable mn

consistent with the chosen model and the parameter set αn

4 use the pseudo market data mn as regressors instead of the

model parameters αn when you train your NN ψG,
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The Market Based NN approach: Training

Use the DB

Regressors Target

m1 g1 Π1

m2 g2 Π2

. . .

mN gN ΠN

Table

to learn the map

ψNN : m, g → Π(α,G(g)
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The Market Based NN approach: Predict

1 given a position G read off the parameters g,

2 look at market data and select the corresponding set of market

data m,

3 feed the market data m, and the position parameters g to ψNN in

order to price the position G.
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Heston Model: European Options

For the Heston model we have the following model parameters

α = {ν, θ, κ, η, ρ}

Recipe for vanilla options

1 generate random values for gn = {Tn, K̂n} and

αn = {νn, θn, κn, ηn, ρn},

2 for each set αn,gn use the model to compute the prices Πn

3 select a set of strike K 1, . . . ,K J as representative of the smile

4 for each K j use the model to compute the model price:

Πj = E[ (M(αn,Tn)− K j )
+ ],

5 invert the J prices Πj to compute the implied volatility smile

σn(Tn,K j) 1 ≤ j ≤ J
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European Options: Volatility Smile

Train the NN with the data set:

Regressors Target

T1 K̂1 σ1 Π1

T2 K̂2 σ2 Π2
...

...

TN K̂N σN ΠN

Table: Sample input data set for the Heston Model.

Empirically a good choice to identify the calibration map φ is obtained

by selecting, for each T , the points:

K = {.900, .925, .950, .975,1.000,1.025,1.050,1.075,1.100}.
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European Options: Numerical Results

Figure: Scatter plot for the European call test set of 1 million entries. The NN predictions are
compared with the actual prices.
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European Options: Numerical Results

Figure: Percentage errors distribution for the NN predictions on the European call test set of 1
million entries. The title shows the MAPE (mean absolute percentage error).
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European Options: Market test

1 Market test refer to the use of the trained NN when trying to

replicate prices of S&P 500 of May 19th, 2017.

2 The procedure used to feed the network with regressors, is the

one described in these notes.

3 An interpolation was used to extract the smile at the appropriate

maturity and strikes.
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European Options: Market test

Figure: Comparison between the NN predictions and market prices quoted for maturity
T = 0.671 years. The prices are plotted as a function of moneyness. The no-arbitrage threshold
(intrinsic value) is also displayed.
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European Options: Market test

Figure: Comparison between the BS implied volatilities in NN prices and those implied in market
prices quoted for maturity T = 0.671 years. Null implied volatilities correspond to NN prices too
close to the intrinsic value.
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European Options: Market test

Figure: As before, for T = 1.591 years.
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European Options: Market test

Figure: As before, for T = 1.591 years.
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Knock Out Options

Let Smin(T ) := min
0≤t≤T

S(t)

The payoff is defined as: [S(T )− K ]+1{Smin(T )>B}

For Knock Out options we have two extra parameters with respect to

the vanilla option: the barrier level and the interest rate.

Regressors Target

r1 B1 T1 K̂1 σ1 Π1

r2 B2 T2 K̂2 σ2 Π2

. . .

rN BN TN K̂N σN ΠN

Table: Sample input data set for the Heston Model

where K̂ = K
S0

, q = 0, and B1, . . . ,BN are barrier levels.
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Knock Out Options: Results

Figure: Scatter plot for the DOC (down-out-call) test set (10,000 entries). NN prices against FD
prices.
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Knock Out Options: Results

Figure: Errors distribution for the DOC (down-out-call) test set (10,000 entries). The title shows
the MAE (mean absolute error).
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Knock Out Options: Results

Figure: Errors distribution for the DOC (down-out-call) test set (10,000 entries) of Monte Carlo
prices computed with 216 = 65536 MC scenarios for underlying stock price. The title shows the
MAE (mean absolute error).
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Knock Out Options: Results

Figure: Errors distribution for the DOC (down-out-call) test set (10,000 entries) of Monte Carlo
prices computed with 220 = 1048576 MC scenarios for underlying stock price. The title shows
the MAE (mean absolute error).
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Double Knock Out Options

For Double Knock Out options we have two extra parameters with

respect to the vanilla option: the low and the high barriers.

Regressors Target

Bl
1 Bh

1 T1 K̂1 σ1 Π1

Bl
2 Bh

2 T2 K̂2 σ2 Π2

. . .

Bl
N Bh

N TN K̂N σN ΠN

Table: Sample input data set for the Heston Model

K̂ = K
S0

Bl
1, . . . ,B

l
N are low barriers

Bh
1 , . . . ,B

h
N are high barriers.
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Double Knock Out Options: Results

Figure: Scatter plot for the Double Knock Out test set. NN prices against FD prices.
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The Hull+White Model

The Hull+White model is quite convenient as a playground given that

1 we can test out ideas without having to resort to expensive MC

simulation to produce the ’correct result’ ( model result).

2 Within the H+W model we have closed form solution both for Caps

and Swaptions.

The dynamic, in the bank account numeraire, of the H+W model , is

given by the SDE

dr(t) = (θ(t)− γr(t))dt + σdWt , r(0) = ro

The deterministic function θ(t) is chosen to match todays observed

curve
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Model Generation

We have calibrated the NS parameters on a real Euribor 6 months

curve,

Figure: Nelson-Siegel curves vs original Euribor 6 month curve
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Model Generation

. . . next we have sampled NS parameters from a normal distribution

centered around the calibrated parameters.

Figure: A sample of random curves generated by Nelson-Siegel parameters
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Regressors and target. Summary

In the language adopted so far we have

α = {γ, σ, β0, β1, β2, τ}

Building realistic discount curves is extremely important, given

that this curve controls almost all of the regressors and the target

price.

The NS parameters will be replaced, as regressors, by suitably

selected interest rates

model parameters are replaced by the volatility smile
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Contract parameters: Maturity and Tenor

Contract parameters g are:

Maturity Tn: U ([0, 30]), we have sampled uniformly distributed

maturities, inside the range [0, 30];

Tenor Nnp: for each maturity we have trained the NN over quoted

tenors:

1y ,2y ,3y ,4y ,5y ,6y ,7y ,8y ,9y ,10y ,15y ,20y ,25y ,30y

Strike κn: U ([ATM - 400 bps, ATM + 400 bps]),

Polimi-Fintech 34 / 41



Contract parameters: Strikes

To generate random strikes, we have set up a procedure that goes like

this: for each row n of the training set, given:

{IR curven, γn, σn, Tn, Nnp}

compute the Swap Rate Sp(tn) corresponding to the time schedule:

tm, tm + δt , . . . , tm + pδt

given Sp(tn), sample uniformly distributed strikes within the range:

Sp(tn)± 400 bps
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Swaptions Curve’s representative Rates

As market data, needed to replace the NS paramters, we selected some of the most liquid rates
in the market.

Spot and forward Euribor rates:

RSpot(0, 3m) Rfwd(3m, 6m) Rfwd(6m, 1y)

Spot Swap Rates for 6-months payment schedule from 1 to 30 years:

S2p(t0), p = 2, 5, 10, 15, 20, 25, 30, 40, 50, 60

Polimi-Fintech 36 / 41



Market Parameters

The dynamical parameters of the model are replaced by the volatility

smile:

– Shift=5%; necessary for working with negative rates with

log-normal dynamics;

– Strikes: the smile section has been computed on these set of

strikes, expressed as difference in basis point with respect to the

ATM:

Strikes =







ATM − 150bps ATM − 100bps ATM − 50bps

ATM − 25bps ATM ATM + 25bps

ATM + 50bps ATM + 100bps ATM + 150bps






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Network Topology

6 Hidden Layers, Dense structure: all the nodes of layer K, are

connected to nodes of layer K ± 1;

600 nodes per layer;
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Numerical results
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Figure: Swaption: scatter plot on the test set for OTM payer 10 X 2, 10 X 5, and 10 X 10
Swaptions. Strike is ATM + 150bps.

Polimi-Fintech 39 / 41



Numerical results
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Figure: Swaption: scatter plot on the test set for the 10 X 2, 10 X 5, and 10 X 10 Swaptions.
Strike is ATM
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Numerical results
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Figure: Swaption: scatter plot on the test set for 10 X 2, 10 X 5, and 10 X 10 Swaptions. Strike is
ATM - 150 bps
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Numerical results. MC vs NN

Figure: Swaption: comparison of the error distribution for MC and NN for different OTM
Swaptions with 10 years maturity
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Conclusions

From the results presented so far we may summarize the following

conclusions.

1 We established a pricing framework where stochastic dynamics are
used to generate large, consistent, and arbitrage-free sets including both

market data and derivatives prices, which, in turns, are used to train NNs
to price the same instruments.

2 We tested different dynamics (Black-Scholes, Heston, Hull-White), and

we showed that our NNs, once properly trained, can price both plain

vanillas and some exotics with good precision and absorbing negligible
computational resources.

3 Our framework is both flexible with respect to the introduction of other

and more complex stochastic dynamics and exotic derivatives, and
robust with respect to the tuning of the NNs’ hyper-parameters. It allows,

in principle, to price any derivative, overcoming both the scarcity of

observable market prices and the computational bottlenecks due to
model calibration and numerical pricing algorithms, thus constituting a

promising alternative for efficient risk management of portfolios of
financial instruments.
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Future Work

Our approach can be extended in a number of directions.

1 The Heston model provides volatility surfaces not much skewed, and
actually quite flat in many cases; a better choice to investigate could be

the stochastic volatility model with jumps suggested by (?). Analogously,

for interest rates, one could explore better dynamics, e.g. the two-factors
Hull-White model (see e.g. ?), or the Generalized Forward Market Model

recently proposed by (?) and (?).

2 Data sets could be extended both with more data, using wider/finer

ranges of model parameters’ values, and more payoffs, e.g. including
digital, path dependent, and early exercise features.
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Future Work (cont’d)

3 Greeks could be introduced in the framework both using automatic
adjoint differentiation (AAD) as suggested by (?), which requires greeks

as regressor of the NN, or using polynomial interpolation as suggested

by (?), which does not require greeks as regressors.

4 Stress test: we could use our NN, without any further training, to
compute prices on stressed market scenarios (provided that the

stressed scenario is within the training domain).
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