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A  target volatility strategy (TVS) is a portfolio of risky assets (tipically equities) and a risk-free asset dynamically
re-balanced with the aim of maintaining the overall portfolio volatility level closed to some target value ത𝜎

❖ 𝕀 𝑛-dimensional vector with unitary entries

❖𝝎𝒕 automatic volatility targeting algorithm

❖ 𝜶𝒕 time-dependent allocation strategy for the risky-asset portfolio

Target Volatility Strategy 

𝑑𝐼𝑡
𝐼𝑡

= 𝜔𝑡𝛼𝑡 ⋅
𝑑𝑆𝑡
𝑆𝑡

+ (1 − 𝜔𝑡𝛼𝑡 ⋅ 𝕀)
𝑑𝐵𝑡
𝐵𝑡

Risky component
𝒏-dimensional vector

Risk- free 
component
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➢ We consider the point of view of a bank selling a protection to a portfolio manager on the capital invested in 
a TVS. 

➢ The manager buys a plain vanilla call option on the TVS to ensure capital protection. 

➢ The portfolio manager has the freedom of changing the relative weights 𝜶𝒕 of the risky assets during the life 
of the TVS

➢ The risky assets have different hedging costs                  the bank shall adjust the price of the protection to 
include them in the worst case scenario

The Pricing Problem

𝑉0 ≔ sup
𝛼

𝔼 𝐷0 𝑇 𝐼𝑇(𝛼) − 𝐾 +

Pricing problem becomes a stochastic control problem: finding the optimal 
strategy 𝜶𝒕

∗which maximizes the option price
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𝑑𝐼𝑡
𝐼𝑡

= 𝜔𝑡𝛼𝑡 ⋅
𝑑𝑆𝑡
𝑆𝑡

+ (1 − 𝜔𝑡𝛼𝑡 ⋅ 𝕀)
𝑑𝐵𝑡
𝐵𝑡

➢ We consider a fund trading a basket of 𝑛 risky assets with price process 𝑆𝑡 funded with a cash account 𝐵𝑡
accruing at 𝑟𝑡.  

➢ We assume a generic semi-martingales dynamics under the risk-neutral measure for the securities

❖ 𝝁𝒕: hedging costs of the assets

❖ 𝝂𝒕: diffusion matrix

TVS Dynamics

𝑑𝑆𝑡
𝑆𝑡

= 𝑟𝑡 − 𝜇𝑡 𝑑𝑡 + 𝜈𝑡 ⋅ 𝑑𝑊𝑡

Time-dependent Black and Scholes (BS): 𝝂𝒕 ≔ 𝝂 𝒕

Local Volatility model (LV): 𝝂𝒕 ≔ 𝝂 𝒕, 𝑺𝒕
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𝑑𝐼𝑡
𝐼𝑡

= 𝜔𝑡𝛼𝑡 ⋅
𝑑𝑆𝑡
𝑆𝑡

+ (1 − 𝜔𝑡𝛼𝑡 ⋅ 𝕀)
𝑑𝐵𝑡
𝐵𝑡

TVS Dynamics

𝑑𝑆𝑡
𝑆𝑡

= 𝑟𝑡 − 𝜇𝑡 𝑑𝑡 + 𝜈𝑡 ⋅ 𝑑𝑊𝑡

𝝎𝒕 automatic volatility targeting algorithm: 𝑉𝑎𝑟𝑡 𝑑𝐼𝑡 = ത𝜎𝐼𝑡
2𝑑𝑡 𝜔𝑡 =

ഥ𝜎

𝛼𝑡⋅𝜈𝑡
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𝑑𝐼𝑡
𝐼𝑡

= 𝑟𝑡 − ത𝜎
𝛼𝑡 ⋅ 𝜇𝑡
𝛼𝑡 ⋅ 𝜈𝑡

dt +
ത𝜎𝛼𝑡

𝛼𝑡 ⋅ 𝜈𝑡
⋅ 𝜈𝑡 ⋅ 𝑑𝑊𝑡
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➢ In the case of an European payoff we are able to prove that exists an optimal strategy

➢ We get the Markovian projection (MP) of the dynamics followed by the TVS by applying the Gyöngy
Lemma 

➢ Since European payoffs depend only on the marginal distribution at maturity, we can compute the 
option price by means of the MP

Optimal Strategy Closed Solution
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𝑉0 ≔ sup
𝛼

𝔼 𝐷0 𝑇 𝐼𝑇(𝛼) − 𝐾 +

𝑑𝐼𝑡
𝑀𝑃

𝐼𝑡
𝑀𝑃 ≔ [𝑟𝑡 − ℓ𝛼 𝑡, 𝐼𝑡

𝑀𝑃 ]𝑑𝑡 + ത𝜎𝑑𝑊𝑡
𝑀𝑃

ℓ𝛼 𝑡, 𝐾 ≔ ത𝜎𝔼
𝛼𝑡 ⋅ 𝜇𝑡
𝛼𝑡 ⋅ 𝜈𝑡

ȁ𝐼𝑡 = 𝐾

𝑉0 ≔ sup
𝛼

𝔼 𝐷0 𝑇 𝐼𝑇
𝑀𝑃(𝛼) − 𝐾 +
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➢ In the Black and Scholes model with deterministic rates, the TVS dynamics is Markovian. As 
consequence the local drift can be written as

➢ The optimization problem can be solved by looking only at the MP with no simulation needed. The 
optimal strategy for a non-decreasing European payoff consists in minimizing the local drift function, 
independently on the current state 𝐼𝑡:

➢ In absence of constraint, even a closed form formula is available: 

Optimal Strategy Closed Solution

ℓ𝛼 𝑡, 𝐾 ≔ ത𝜎
𝛼(𝑡, 𝐾) ⋅ 𝜇(𝑡)

𝛼(𝑡, 𝐾) ⋅ 𝜈 𝑡

𝜶∗ 𝒕 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝜶

𝜶 ⋅ 𝝁(𝒕)

𝜶 ⋅ 𝝂(𝒕)

𝛼𝑓𝑟𝑒𝑒
∗ 𝑡 = −

Σ−1(𝑡) ⋅ 𝜇(𝑡)

Σ−1 𝑡 ⋅ 𝜇 𝑡 ⋅ 𝜈 𝑡
with Σ 𝑡 = 𝜈 𝑡 𝜈𝑇 𝑡
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➢ Absence of stochastic elements for the estimation of the optimal allocation strategy           a priori 
knowledge of 𝜶∗

➢ Problem is solved just by looking at the market data 𝜇(𝑡) and 𝜈 𝑡 for each pillar and assuming a 
piecewise constant dependence on time.

➢ Once the optimal strategy 𝛼∗ 𝑡 is known, then we can price the payoff by means of a Black and 
Scholes formula

The Black and Scholes Model

𝜶∗ 𝒕 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝜶

𝜶 ⋅ 𝝁(𝒕)

𝜶 ⋅ 𝝂(𝒕)
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𝑉0
𝐵𝑆 = 𝐵𝑆(𝐹𝑇𝑉𝑆 0, 𝑇; 𝛼∗ , 𝐾, 𝑇, ത𝜎, 𝐷 0, 𝑇; 𝜁 )

𝐹𝑇𝑉𝑆 𝑡, 𝑇; 𝛼∗ ≔ 𝐼𝑡 exp න
𝑡

𝑇

𝑟 𝑢 − ℓ𝛼∗ 𝑢 𝑑𝑢
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The Hamilton-Jacobi-Bellman for the optimal derivative price 𝑉 ≔ 𝑉 𝐼𝑡 , 𝑋𝑡, 𝑡 , naming 𝐼 ≔ 𝐼𝑡 and 𝑋 ≔ 𝑋𝑡

൞

𝑑𝑋𝑡 = 𝑀 𝑋𝑡 𝑑𝑡 + Σ 𝑋𝑡 ⋅ 𝑑𝑊𝑡

𝑑𝐼𝑡
𝐼𝑡

= 𝑟𝑡 − ത𝜎
𝛼𝑡 ⋅ 𝜇𝑡
𝛼𝑡 ⋅ 𝜈𝑡

𝑑𝑡 +
ത𝜎𝛼𝑡

𝛼𝑡 ⋅ 𝜈𝑡
⋅ 𝜈𝑡 ⋅ 𝑑𝑊𝑡

Hamilton-Jacobi-Bellman Problem for TVO

𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝐼
𝐼𝑟𝑡 + ∇𝑋𝑉 ⋅ 𝑀 𝑋 +

1

2

𝜕2𝑉

𝜕𝐼2
ത𝜎𝐼2 +

1

2
Tr Σ 𝑋 𝑇 𝐻𝑋𝑉 Σ X

+ ത𝜎𝐼max
𝛼

−
𝜕𝑉

𝜕𝐼

𝛼 ⋅ 𝜇𝑡
𝛼 ⋅ 𝜈𝑡

+ ∇𝑋,𝐼𝑉 ⋅ Σ 𝑋 𝑇 ⋅
𝛼 ⋅ 𝜇𝑡
𝛼 ⋅ 𝜈𝑡

= 0

Time-dependent Black and 
Scholes: 𝑉 ≔ 𝑉 𝐼𝑡 , 𝑡

∇𝑋𝑉: Gradient of 𝑉 w.r.t. 𝑋
𝐻𝑋𝑉: Hessian matrix of 𝑉 w.r.t. 𝑋

∇𝑋,𝐼𝑉 ≔
𝜕2𝑉

𝜕𝑋1𝜕𝐼
, … ,

𝜕2𝑉

𝜕𝑋𝑛𝜕𝐼
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𝜶∗ 𝒕 ≔ 𝐚𝐫𝐠𝐦𝐢𝐧
𝜶

𝜶 ⋅ 𝝁(𝒕)

𝜶 ⋅ 𝝂(𝒕)
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The Hamilton-Jacobi-Bellman for the optimal derivative price 𝑉 ≔ 𝑉 𝐼𝑡 , 𝑋𝑡, 𝑡 , naming 𝐼 ≔ 𝐼𝑡 and 𝑋 ≔ 𝑋𝑡

൞

𝑑𝑋𝑡 = 𝑀 𝑋𝑡 𝑑𝑡 + Σ 𝑋𝑡 ⋅ 𝑑𝑊𝑡

𝑑𝐼𝑡
𝐼𝑡

= 𝑟𝑡 − ത𝜎
𝛼𝑡 ⋅ 𝜇𝑡
𝛼𝑡 ⋅ 𝜈𝑡

𝑑𝑡 +
ത𝜎𝛼𝑡

𝛼𝑡 ⋅ 𝜈𝑡
⋅ 𝜈𝑡 ⋅ 𝑑𝑊𝑡

Hamilton-Jacobi-Bellman Equation

𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝐼
𝐼𝑟𝑡 + ∇𝑋𝑉 ⋅ 𝑀 𝑋 +

1

2

𝜕2𝑉

𝜕𝐼2
ത𝜎𝐼2 +

1

2
Tr Σ 𝑋 𝑇 𝐻𝑋𝑉 Σ X

+ ത𝜎𝐼 max
𝛼

−
𝜕𝑉

𝜕𝐼

𝛼 ⋅ 𝜇𝑡
𝛼 ⋅ 𝜈𝑡

+ ∇𝑋,𝐼𝑉 ⋅ Σ 𝑋 𝑇 ⋅
𝛼 ⋅ 𝜇𝑡
𝛼 ⋅ 𝜈𝑡

= 0
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∇𝑋𝑉: Gradient of 𝑉 w.r.t. 𝑋
𝐻𝑋𝑉: Hessian matrix of 𝑉 w.r.t. 𝑋

∇𝑋,𝐼𝑉 ≔
𝜕2𝑉

𝜕𝑋1𝜕𝐼
, … ,

𝜕2𝑉

𝜕𝑋𝑛𝜕𝐼

Local Volatility: 𝜈𝑡 ≔ 𝜈 𝑡, 𝑆𝑡
second order term.  No closed 
formula available! 

numerical approach: 
Reinforcement Learning
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AGENT

Numerical Reward

𝑟𝑡+1

ENVIRONMENT

Action 𝑎𝑡

State 𝑠𝑡

New State

𝑠𝑡+1

Agent Goal: 𝝅∗ = 𝐚𝐫𝐠𝐦𝐚𝐱𝝅 𝔼𝝅 σ𝒕=𝟎
𝒉−𝟏 𝒓𝒕+𝟏

Episodic task with discrete time-steps: 𝑡 = 0,1,2, … , ℎ

Policy 𝝅(𝒂𝒕ȁ𝒔𝒕): a  mapping from states to 
probabilities of selecting each
possible action.
𝑎𝑡 ∼ 𝜋(⋅ ȁ𝑠𝑡)

π                agent brain  

Reinforcement Learning
Reinforcement Learning describes how an agent behaves in a branch of Machine Learning which describes 
how an agent interacts with an environment so to maximize some notion of cumulative reward    
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➢ No a priori knowledge of the model                sample the system to gather statistical knowledge.

➢ The agent is not told which actions to take but instead it must discover by trial and error which are 
the behaviours yielding to the greatest reward by trying them several times.

➢ Challenges that are not present in other kinds of learning:

❖ temporal credit assignment;
❖ exploration-exploitation trade-off.

➢ Wide taxonomy of the modern Reinforcement Learning landscape based on the question of what to 
learn.

We will focus on Policy Gradient Algorithms

Reinforcement Learning
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Direct estimation of 𝝅∗ (Direct policy search)

Parameterization of the policy 𝜋𝜃by a 
set of parameters 𝜃 ∈ Θ ⊆ ℝ𝐷𝜃

Artificial Neural Network (ANN):
𝜃 corresponds to the weights of the ANN

RL Policy Gradient Algorithm

Optimization of 𝜃 as to maximize the objective function 𝐿 𝜃
𝜃∗ = argmax

𝜃∈Θ
𝐿(𝜃)

𝜃𝑘+1 = 𝜃𝑘 + 𝜉𝑘∇𝜃𝐿 𝜃 ȁ𝜃𝑘with 𝜉𝑘 learning rate

The definition of the objective function 𝑳(𝜽) depends on 
the learning strategy adopted

Proximal Policy Optimization (PPO) 
algorithm (Schulman et al., 2017) 
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RL Algorithm: State Space

Reward

𝑟𝑡+1

ENVIRONMENT

Action 𝑎𝑡

State 𝑠𝑡

New State

𝑠𝑡+1

AGENT

➢ Episode: the episode takes place on a time grid ℑ ≔ {𝑇0, . . , 𝑇𝑘 , … , 𝑇𝑚}
with 𝑇0 = 0 and 𝑇𝑚 = 𝑇

➢ State:  𝑠𝑘 = Tk, ITk , S𝑇𝑘 ∀𝑇𝑘 ∈ ℑ, so that the state space is (ℝ+)𝑛+1× 0, 𝑇 .

❖ The state is the input of the policy ANN                 need input data normalization

➢ Normalized state space: [−2.5,2.5]𝑛× 0,1 × 0, 𝑇

OpenAI Gym 
Tool𝑇0 𝑇𝑇𝑘

𝑋𝑡 =
log

𝑆𝑇𝑘
𝐹 0, 𝑇𝑘

+
1
02

𝑇𝑘(𝜈2 𝑡 ⋅ 𝕀)𝑑𝑡

0
𝑇𝑘(𝜈2 𝑡 ⋅ 𝕀)𝑑𝑡
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➢ Agent Policy: the asset allocation weights 𝛼𝑡

➢ The policy is a 𝑛-dimensional Diagonal Gaussian Distribution where the mean
vector 𝝁𝜽 𝒔𝒕 is the output of the ANN and the log-standard deviation 𝐥𝐨𝐠𝝈 is
an indipendent parameter which is reduced as the number of the PPO iterations increases.

➢ We study the case of long only positions in the strategy:

❖ Action normalization: bound the actions domain in 0,1 𝑛 and then normalize the action such as it
is satisfied the long position constraint:

RL Algorithm: Action Space

Reward

𝑟𝑡+1

ENVIRONMENT

Action 𝑎𝑡

State 𝑠𝑡

New State

𝑠𝑡+1

AGENT



𝑖=1

𝑛

𝛼𝑡
𝑖 = 1 with 𝛼𝑡

𝑖 > 0

𝛼𝑡 ≔
𝑎𝑡

σ𝑖=1
𝑛 𝑎𝑡

𝑖

OpenAI Gym 
Tool
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RL Algorithm: Reward

Reward

𝑟𝑡+1

ENVIRONMENT

Action 𝑎𝑡

State 𝑠𝑡

New State

𝑠𝑡+1

AGENT

1. Reward: 𝑟𝑘+1: = ቊ
𝐷0 𝑇 𝐼𝑇 − 𝐾 + if 𝑇𝑘+1 = 𝑇
0 otherwise

2. Reward: 𝑟𝑘 ≔ 𝛾𝑘 𝑉𝐵𝑆 𝑇𝑘+1 − 𝑉𝐵𝑆 𝑇𝑘
where VBS Tk : = 𝐵𝑆(𝐹𝑇𝑉𝑆 𝑇𝑘; 𝑇; 𝛼𝐵𝑆

∗ , 𝐾, 𝑇 − 𝑇𝑘 , ത𝜎, 𝐷 𝑇𝑘 , 𝑇, 𝜁 ) and 𝑉 𝑇0 = 0

➢ This kind of function introduces intermediate rewards to help the agent to take an optimal choice
➢ 𝛾 is a reward discount factor; if we choose 𝛾 = 1 then we have

𝔼𝝅𝜽∗ σ𝒌=𝟎
𝒎−𝟏 𝒓𝒕+𝟏 ∼ 𝑽𝟎

OpenAI Gym 
Tool

We have implemented two different reward functions to train
the agent

σ𝑘=0
𝑚−1 𝑟𝑡+1 = σ𝑘=0

𝑚−1[𝑉𝐵𝑆 𝑇𝑘+1 − 𝑉𝐵𝑆 𝑇𝑘 ] = 𝑉𝐵𝑆 𝑇 = 𝐼𝑇 − 𝐾 +
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Numerical Result: BS Dynamics

BS price: 𝚷𝟎
∗ = 𝟏. 𝟗𝟏𝟓 × 𝟏𝟎−𝟐[𝐄𝐔𝐑]

MC price: 𝚷𝟎
𝐑𝐋 = 𝟏. 𝟗𝟏𝟒 ± 𝟎. 𝟎𝟎𝟑 × 𝟏𝟎−𝟐[𝐄𝐔𝐑]

Agent: 5x8 ANN

Reinforcement Learning for Options on Target Volatility Funds Daluiso, Nastasi, Pallavicini and Polo

Option Contract: 𝐼0 = 𝐾 = 1 [EUR], 𝑇 = 1 [yr], ത𝜎 = 5%
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➢ The volatility term is function not only of time 𝑡 but also of the state 𝑆𝑡 no a priori optimal allocation strategy
➢ The price process dynamics model changes but not the market data conditions: two different way to train the agent

➢ Random initialization of the ANN weights 𝜃
➢ BS initial guess: same 𝜃 of the ANN trained in the BS environment

Numerical Results: LV Dynamics

The agent seems to recover the 
same optimal strategy as in the 

BS environment
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➢ We can try to understand if the agent has reached a suboptimal policy by building  a näif strategy to 
measure the RL performance. We call this strategy: Baseline

➢ Baseline: intuitive strategy that applies path-wise the BS solution of maximizing the local drift of the TVS

Numerical Results: the Baseline

Reinforcement Learning for Options on Target Volatility Funds Daluiso, Nastasi, Pallavicini and Polo

Strategy Option price [EUR]

RL from random θ 1.912 ± 0.003 × 10−2

Rl from BS θ 1.915 ± 0.003 × 10−2

Baseline θ 1.915 ± 0.004 × 10−2

Market data display a Black and Scholes market 

𝛼∗ 𝑡, 𝑆𝑡 ≔ argmin
𝛼

𝛼 ⋅ 𝜇(𝑡)

𝛼 ⋅ 𝜈(𝑡, 𝑆𝑡)
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➢ We build a toy market to investigate the control problem in LV dynamics. We choose two assets with equal 𝜇 𝑡 but
different implied volatilities. 

➢ In this way the BS optimal allocation strategy will be completely different from the LV optimal one since it is only
sensitive to the atm implied volatility.

➢ We train the RL agent in this market parameterizing the action through the baseline

Numerical Results: the Baseline
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Conclusions
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Option on targetvol: control problem

We showed how the presence of different funding costs 
coming from hedging the risky assets underlying the TVS 
needs to solve a control problem to find the conservative 
option price.

Reinforcement Learning

• Black and Scholes: the availability of an a priori solution allowed us
to test if the RL agent was able to recover the optimal policy. 
Moreover it provided us the possibility to perform fine tuning of the 
RL hyper-parameters

• Local Volatility: no a priori solution. The agent is able to find as
optimal strategy the baseline one: the application of a path-wise BS 
solution

Black and Scholes Dynamics

We show how under BS dynamics we are able to recover a closed form
solution for the control problem by applying the Gyöngy Lemma and 
the Hamilton-Jacobi-Bellman equation

Future Development

Compare the RL results with standard numerical techniques based on 
backward recursions such as least square Monte Carlo


