Polimi Fintech Series – Sandra Paterlini – April 20, 2021

Apr 20 2021
The Polimi Fintech Series, under the fintech-ho2020.eu and the Cost Fin-AI.eu project, presents
 
April 20th, 2021 – 17.30 (CET)

Sandra Paterlini (Trento University)

Details about the seminar will be added soon

 

Stay updated with latest news on QFinLab seminars subscribing here: https://bit.ly/2TNtC6e
 
Information about future seminars: www.qfinlab.polimi.it/all-news

Polimi Fintech Series – Valerio Potì – March 22, 2021

Mar 22 2021
The Polimi Fintech Series, under the fintech-ho2020.eu and the Cost Fin-AI.eu project, presents
 
March 22nd, 2021 – 17.30 (CET)

Valerio Potì (University College Dublin)

COVID Narrative Risk: A Computational Linguistic Approach to the Econometric Identification of Narrative Risk During the COVID-19 Pandemic

Details about the seminar will be added soon

 

Stay updated with latest news on QFinLab seminars subscribing here: https://bit.ly/2TNtC6e
 
Information about future seminars: www.qfinlab.polimi.it/all-news

Polimi Fintech Series – Charalampos Stasinakis – February 22, 2021

Feb 22 2021
The Polimi Fintech Series, under the fintech-ho2020.eu and the Cost Fin-AI.eu project, presents
 
February 22nd, 2021 – 17.30 (CET)
 
 

Charalampos Stasinakis – University of Glasgow

(with G. Sermpinis)

Big Data, Artificial Intelligence and Machine Learning: A Transformative Symbiosis in Favour of Financial Technology

Abstract

The financial technology revolution is a reality, as the financial world is gradually transforming into a digital domain of high-volume information and high-speed data transformation and processing. The more this transformation takes place, the more consumer and investor behaviour shifts towards a pro-technology attitude of financial services offered by market participants, financial institutions and financial technology companies. This new norm is confirming that information technology is driving innovation for financial technology. In this framework, the value of big data, artificial intelligence and machine learning techniques becomes apparent. The aim of this chapter is multi-fold. Firstly, a multidimensional descriptive analysis is shown to familiarise the reader with the extent of penetration of the above in the financial technology road-map. A short non-technical overview of the methods is then presented. Next, the impact of data analytics and relevant techniques on the evolution of financial technology is explained and discussed along with their applications’ landscape. The chapter also presents a glimpse of the shifting paradigm these techniques bring forward for several fintech related professions, while artificial intelligence and machine learning techniques are tied with the future challenges of AI ethics, regulation technology and the smart data utilisation.

 

Stay updated with latest news on QFinLab seminars subscribing here: https://bit.ly/2TNtC6e
 
Information about future seminars: www.qfinlab.polimi.it/all-news

Polimi Fintech Series – Michele Azzone – January 18, 2021

Jan 18 2021
The Polimi Fintech Series, under the fintech-ho2020.eu and the Cost Fin-AI.eu project, presents
 
January 18th, 2021 – 17.30 (CET)
 
Virtual room: Click here to access the Zoom Virtual Room, or insert the Meeting id on your Zoom app: 824 7266 9724
 
M. Azzone (Politecnico di Milano)
with E. Barucci, G. Giuffra and D. Marazzina
 
A Machine Learning Model for Lapse Prediction in Life Insurance Contracts
Abstract:
In this work, we use the Random Forest methodology to predict the lapse decision of life contracts by policyholders. The methodology outperforms the classical logistic model in describing the phenomenon. We use global and local interpretability tools to investigate how the model works. We show that non economic features (time passed from the incipit of the contract and the time to expiry, as well as the insurance company) play a significant effect in determining the lapse decision while economic/financial features (except the disposable income growth rate) play a limited effect. The analysis shows that linear models, such as the logistic model, may not be adequate to capture the heterogeneity of financial decisions.
 
Stay updated with latest news on QFinLab seminars subscribing here: https://bit.ly/2TNtC6e
 
Information about future seminars: www.qfinlab.polimi.it/all-news

Al via la nuova edizione edizione di Policollege

QFinLab partecipa per la terza volta al Policollege con il corso Primi Passi nella Finanza Matematica.
 
PoliCollege è un progetto di didattica innovativa che offre agli studenti delle scuole secondarie di secondo grado di tutta Italia l’opportunità di approfondire e ampliare le proprie conoscenze tecnico-scientifiche seguendo corsi online tenuti da docenti del Politecnico di Milano
 
 
Il corso Primi Passi nella Finanza Matematica, erogato dal gruppo QFinLab, ha l’obbiettivo di fornire agli studenti gli strumenti per rispondere a domande concrete: cos’è lo spread? Come viene calcolato? Quali sono gli elementi da prendere in considerazione per chiedere un prestito? E ancora: quali sono le condizioni cui porre attenzione nell’aprire un conto corrente? Quali gli investimenti più vantaggiosi? Quanto è oneroso acquistare un oggetto a rate?
 
La terza edizione partirà l’11 gennaio.
 
Per maggiori informazioni su Policollege: https://www.policollege.polimi.it/